This article reviews a decade of research in transforming smartphones into smart measurement tools for science and engineering laboratories. High-precision sensors have been effectively utilized with specific mobile applications to measure physical parameters. Linear, rotational, and vibrational motions can be tracked and studied using built-in accelerometers, magnetometers, gyroscopes, proximity sensors, or ambient light sensors, depending on each experiment design. Water and sound waves were respectively captured for analysis by smartphone cameras and microphones. Various optics experiments were successfully demonstrated by replacing traditional lux meters with built-in ambient light sensors. These smartphone-based measurements have increasingly been incorporated into high school and university laboratories. Such modernized science and engineering experimentations also provide a ubiquitous learning environment during the pandemic period.
The development of low profile gamma-ray detectors has encouraged the production of small field of view (SFOV) hand-held imaging devices for use at the patient bedside and in operating theatres. Early development of these SFOV cameras was focussed on a single modality—gamma ray imaging. Recently, a hybrid system—gamma plus optical imaging—has been developed. This combination of optical and gamma cameras enables high spatial resolution multi-modal imaging, giving a superimposed scintigraphic and optical image. Hybrid imaging offers new possibilities for assisting clinicians and surgeons in localising the site of uptake in procedures such as sentinel node detection. The hybrid camera concept can be extended to a multimodal detec
... Show MoreIn this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant features from
... Show MoreImplementation of TSFS (Transposition, Substitution, Folding, and Shifting) algorithm as an encryption algorithm in database security had limitations in character set and the number of keys used. The proposed cryptosystem is based on making some enhancements on the phases of TSFS encryption algorithm by computing the determinant of the keys matrices which affects the implementation of the algorithm phases. These changes showed high security to the database against different types of security attacks by achieving both goals of confusion and diffusion.
In this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Deci
... Show MoreThis paper designed a fault tolerance for soft real time distributed system (FTRTDS). This system is designed to be independently on specific mechanisms and facilities of the underlying real time distributed system. It is designed to be distributed on all the computers in the distributed system and controlled by a central unit.
Besides gathering information about a target program spontaneously, it provides information about the target operating system and the target hardware in order to diagnose the fault before occurring, so it can handle the situation before it comes on. And it provides a distributed system with the reactive capability of reconfiguring and reinitializing after the occurrence of a failure.