Classification of network traffic is an important topic for network management, traffic routing, safe traffic discrimination, and better service delivery. Traffic examination is the entire process of examining traffic data, from intercepting traffic data to discovering patterns, relationships, misconfigurations, and anomalies in a network. Between them, traffic classification is a sub-domain of this field, the purpose of which is to classify network traffic into predefined classes such as usual or abnormal traffic and application type. Most Internet applications encrypt data during traffic, and classifying encrypted data during traffic is not possible with traditional methods. Statistical and intelligence methods can find and model traffic patterns that can be categorized based on statistical characteristics. These methods help determine the type of traffic and protect user privacy at the same time. To classify encrypted traffic from end to end, this paper proposes using (XGboost) algorithms, finding the highest parameters using Bayesian optimization, and comparing the proposed model with machine learning algorithms (Nearest Neighbor, Logistic Regression, Decision Trees, Naive Bayes, Multilayer Neural Networks) to classify traffic from end to end. Network traffic has two classifications: whether the traffic is encrypted or not, and the target application. The research results showed the possibility of classifying dual and multiple traffic with high accuracy. The proposed model has a higher classification accuracy than the other models, and finding the optimal parameters increases the model accuracy.
Change detection is a technology ascertaining the changes of
specific features within a certain time Interval. The use of remotely
sensed image to detect changes in land use and land cover is widely
preferred over other conventional survey techniques because this
method is very efficient for assessing the change or degrading trends
of a region. In this research two remotely sensed image of Baghdad
city gathered by landsat -7and landsat -8 ETM+ for two time period
2000 and 2014 have been used to detect the most important changes.
Registration and rectification the two original images are the first
preprocessing steps was applied in this paper. Change detection using
NDVI subtractive has been computed, subtrac
In this work, satellite images for Razaza Lake and the surrounding area
district in Karbala province are classified for years 1990,1999 and
2014 using two software programming (MATLAB 7.12 and ERDAS
imagine 2014). Proposed unsupervised and supervised method of
classification using MATLAB software have been used; these are
mean value and Singular Value Decomposition respectively. While
unsupervised (K-Means) and supervised (Maximum likelihood
Classifier) method are utilized using ERDAS imagine, in order to get
most accurate results and then compare these results of each method
and calculate the changes that taken place in years 1999 and 2014;
comparing with 1990. The results from classification indicated that
Thisstudy aims to determine the specifications of obese women accordingto the heightand type of obesity. It also aimstoidentify the significance of differences in choosing ready-made clothes for the research sample. Finally, the significance of differences in choosing ready-made clothes according to the variable of binaryclassification ofobesity is also identified.The study sample includes obese women: employees, non-employees and students with the age group (18-50) years.The weights and lengths of the sample have been taken to suit the group of obese women.Aquestionnaire in the form of an open question was distributed among (50) obese womenso as to extract the items of the questionnaire. After that, the questionnaire was distributed amo
... Show MoreThe vegetable cover plays an important role in the environment and Earth resource sciences. In south Iraq, the region is classified as arid or semiarid area due to the low precipitations and high temperature among the year. In this paper, the Landat-8 satellite imagery will be used to study and estimate the vegetable area in south Iraq. For this purpose many vegetation indices will be examined to estimate and extract the area of vegetation contain in and image. Also, the weathering parameters must be investigated to find the relationship between these parameters and the arability of vegetation cover crowing in the specific area. The remote sensing packages and Matlab written subroutines may be use to evaluate the results.
In any natural area or water body, evapotranspiration is one of the main outcomes in the water balance equation. It is also a crucial component of the hydrologic cycle and considers as the main requirement in the planning and designing of any irrigation project. The climatic parameters for the Ishaqi area are calculated from the available date of Samarra and Al-Khlais meteorological stations according to a method for the period (1982–2017) according to Fetter method. The results of the mean of rainfall, relative humidity temperature, evaporation, sunshine, and wind speed of the Ishaqi area are 171.96 mm, 49.67%, 24.86 C°, 1733.61 mm, 8.34 h/day, and 2.3 m/sec, respectively. Values of Potential Evapotranspiration are determined by
... Show MoreExtracting moving object from video sequence is one of the most important steps
in the video-based analysis. Background subtraction is the most commonly used
moving object detection methods in video, in which the extracted object will be
feed to a higher-level process ( i.e. object localization, object tracking ).
The main requirement of background subtraction method is to construct a
stationary background model and then to compare every new coming frame with it
in order to detect the moving object.
Relied on the supposition that the background occurs with the higher appearance
frequency, a proposed background reconstruction algorithm has been presented
based on pixel intensity classification ( PIC ) approach.
Ali AL-Gharbi area lies to the northeast of Missan Governorate, southeast of Iraq. The meteorological data recorded in Ali AL-Gharbi station for the period (1994-2014) were used to assess the climatic condition of the study area, it was found that the monthly mean of rainfall is (15.35 mm), relative humidity (43.95 %), the temperature (24.50 C◦), wind speed (4.35 m/sec) and the strongest and most frequent winds are the northwest, sunshine (8.54 h/day) and evaporation (305.73 mm).The results of the data analysis show that, the climate of study area is characterized by dry and relatively hot in summer, and cold with low rain in winter. This study shows that, there is water surplus of (35.69 %) of the total rainfall amount which is equivalen
... Show MoreIn this paper, the discriminant analysis is used to classify the most wide spread heart diseases known as coronary heart diseases into two groups (patient, not patient) based on the changes of discrimination features of ten predictor variables that we believe they cause the disease . A random sample for each group is employed and the stepwise procedures are performed in order to delete those variables that are not important for separating the groups. Tests of significance of discriminant analysis and estimating the misclassification rates are performed
Vegetation monitoring is considered an important application in remote sensing task due to variation of vegetation types and their distribution. The vegetation concentration around the Earth is increase in 5% in 2000 according to NASA monitoring. This increase is due to the Indian vegetable programs. In this research, the vegetation monitoring in Baghdad city was done using Normalized Difference Vegetation Index (NDVI) for temporal Landsat satellite images (Landsat 5 TM& Landsat 8 OIL). These images had been used and utilize in different times during the period from 2000, 2010, 2015 & 2017. The outcomes of the study demonstrate that a change in the vegetation Cover (VC) in Baghdad city. (NDVI) generally shows a low v
... Show MoreIn this paper, we investigate some methods to solve one of the multi-criteria machine scheduling problems. The discussed problem is the total completion time and the total earliness jobs To solve this problem, some heuristic methods are proposed which provided good results. The Branch and Bound (BAB) method is applied with new suggested upper and lower bounds to solve the discussed problem, which produced exact results for in a reasonable time.