Extracting moving object from video sequence is one of the most important steps
in the video-based analysis. Background subtraction is the most commonly used
moving object detection methods in video, in which the extracted object will be
feed to a higher-level process ( i.e. object localization, object tracking ).
The main requirement of background subtraction method is to construct a
stationary background model and then to compare every new coming frame with it
in order to detect the moving object.
Relied on the supposition that the background occurs with the higher appearance
frequency, a proposed background reconstruction algorithm has been presented
based on pixel intensity classification ( PIC ) approach. First, pixel intensity in a
predetermined time period has been classified according to a proposed clustering
method, second, pixels frequency of those clusters has been calculated, finally, the
center of the cluster with the higher pixel frequency has been chosen as the
background pixel intensity value.
The efficiency and effectiveness of the proposed algorithm has been confirmed
through comparing its results with those of the most common traditional methods,
besides , the results of the proposed algorithm in a number of testing environment
which are traffic monitoring and pedestrian surveillance shows that the proposed
algorithm can save space and economize computation time and give good accuracy.
Background Subtraction (BGS) is one of the main techniques used for moving object detection which further utilized in video analysis, especially in video surveillance systems. Practically, acquiring a robust background (reference) image is a real challenge due to the dynamic change in the scene. Hence, a key point to BGS is background modeling, in which a model is built and repeatedly used to reconstruct the background image.
From N frames the proposed method store N pixels at location(x,y) in a buffer, then it classify pixel intensity values at that buffer using a proposed online clustering model based on the idea of relative run length, the cluster center with the highest frequency will be adopted as the background pixel
... Show MoreSpraying pesticides is one of the most common procedures that is conducted to control pests. However, excessive use of these chemicals inversely affects the surrounding environments including the soil, plants, animals, and the operator itself. Therefore, researchers have been encouraged to...
In the last years, the research of extraction the movable object from video sequence in application of computer vision become wide spread and well-known . in this paper the extraction of background model by using parallel computing is done by two steps : the first one using non-linear buffer to extraction frame from video sequence depending on the number of frame whether it is even or odd . the goal of this step is obtaining initial background when over half of training sequence contains foreground object . in the second step , The execution time of the traditional K-mean has been improved to obtain initial background through perform the k-mean by using parallel computing where the time has been minimized to 50% of the conventional time
... Show MoreThis paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that
Detection moving car in front view is difficult operation because of the dynamic background due to the movement of moving car and the complex environment that surround the car, to solve that, this paper proposed new method based on linear equation to determine the region of interest by building more effective background model to deal with dynamic background scenes. This method exploited the permitted region between cars according to traffic law to determine the region (road) that in front the moving car which the moving cars move on. The experimental results show that the proposed method can define the region that represents the lane in front of moving car successfully with precision over 94%and detection rate 86
... Show MoreSteganography is an important class of security which is widely used in computer and network security nowadays. In this research, a new proposed algorithm was introduced with a new concept of dealing with steganography as an algorithmic secret key technique similar to stream cipher cryptographic system. The proposed algorithm is a secret key system suggested to be used in communications for messages transmission steganography
Honeywords are fake passwords that serve as an accompaniment to the real password, which is called a “sugarword.” The honeyword system is an effective password cracking detection system designed to easily detect password cracking in order to improve the security of hashed passwords. For every user, the password file of the honeyword system will have one real hashed password accompanied by numerous fake hashed passwords. If an intruder steals the password file from the system and successfully cracks the passwords while attempting to log in to users’ accounts, the honeyword system will detect this attempt through the honeychecker. A honeychecker is an auxiliary server that distinguishes the real password from the fake passwords and t
... Show MoreScience, technology and many other fields are use clustering algorithm widely for many applications, this paper presents a new hybrid algorithm called KDBSCAN that work on improving k-mean algorithm and solve two of its
problems, the first problem is number of cluster, when it`s must be entered by user, this problem solved by using DBSCAN algorithm for estimating number of cluster, and the second problem is randomly initial centroid problem that has been dealt with by choosing the centroid in steady method and removing randomly choosing for a better results, this work used DUC 2002 dataset to obtain the results of KDBSCAN algorithm, it`s work in many application fields such as electronics libraries,