Classification of network traffic is an important topic for network management, traffic routing, safe traffic discrimination, and better service delivery. Traffic examination is the entire process of examining traffic data, from intercepting traffic data to discovering patterns, relationships, misconfigurations, and anomalies in a network. Between them, traffic classification is a sub-domain of this field, the purpose of which is to classify network traffic into predefined classes such as usual or abnormal traffic and application type. Most Internet applications encrypt data during traffic, and classifying encrypted data during traffic is not possible with traditional methods. Statistical and intelligence methods can find and model traffic patterns that can be categorized based on statistical characteristics. These methods help determine the type of traffic and protect user privacy at the same time. To classify encrypted traffic from end to end, this paper proposes using (XGboost) algorithms, finding the highest parameters using Bayesian optimization, and comparing the proposed model with machine learning algorithms (Nearest Neighbor, Logistic Regression, Decision Trees, Naive Bayes, Multilayer Neural Networks) to classify traffic from end to end. Network traffic has two classifications: whether the traffic is encrypted or not, and the target application. The research results showed the possibility of classifying dual and multiple traffic with high accuracy. The proposed model has a higher classification accuracy than the other models, and finding the optimal parameters increases the model accuracy.
The study aims to investigate the effect of the Six Thinking Hats Strategy on the achievement of essay writing skills among third-year students in Arabic Language and Literature who are Persian speakers enrolled in the course of Essay Writing (III) at Shiraz University for the academic year 2019-2020. The sample of the study consisted of (15) male and female students who were taught according to the pre-posttest, using the quasi-experimental approach. After applying the statistical analysis on the scores of the post-test, the results showed that there are statistically significant differences in the average of students' achievement in the skills of essay writing in terms of using the Six Thinking Hats Strategy. The results also proved th
... Show MoreThe compound Fe0.5CoxMg0.95-xO where (x= 0.025, 0.05, 0.075, 0.1) was prepared via the sol-gel technique. The crystalline nature of magnesium oxide was studied by X-ray powder diffraction (XRD) analysis, and the size of the sample crystals, ranging between (16.91-19.62nm), increased, while the lattice constant within the band (0.5337-0.4738 nm) decreased with increasing the cobalt concentration. The morphology of the specimens was studied by scanning electron microscopy (SEM) which shows images forming spherical granules in addition to the presence of interconnected chips. The presence of the elements involved in the super
This paper is a review of the genus Sitta in Iraq, Five species of this genus are recognized
Sitta kurdistanica, S. neumayr, S. europaea, S.dresseri and S. tephronota. Geographical
distribution and systematic nots were given for separation and identification, also some notes
on nest building and nest sites of S. tephronota supporting by figures are presented.
To evaluate the Interaction of Mn(II), Fe(II), Co(II), Ni(II),Cu(II), Zn(II) And Cd(II) Mixed- Ligand Complexes of cephalexin mono hydrate (antibiotics) And Furan-2-Carboxylic Acid To The Different DNA Sources. All the metal complexes were observed to cleave the DNA. A difference in the bands of complexes .The cleavage efficiency of the complexes compared with that of the control is due to their efficient DNA-binding ability and the other factors like solubility and bond length between the metal and ligand may also increase the DNA-binding ability. The ligands (Cephalexin mono hydrate (antibiotics) and Furan-2- Carboxylic acid and there newly synthesized metal complexes shows good antimicrobial activities and Binding DNA , thus, can be used
... Show MoreThe research aims to reveal the impact of media policy in Iraqi media outlets on the level of objectivity in these outlets. A study from the communicators’ point of view where the researcher used a survey method on the communicators in media outlets to reveal the extent of media policies knowledge as well as the pressures exerted by this policy on communicators in media outlets. It also reveals the extent of their commitment to objectivity, neutrality in dealing with information and the way used to transfer it.
The research sample included (179) respondents from communicators in a range of Media outlets such as (Press, Radio, and Television), The researcher was careful with the diversity of the sample, and
Heart disease identification is one of the most challenging task that requires highly experienced cardiologists. However, in developing nations such as Ethiopia, there are a few cardiologists and heart disease detection is more challenging. As an alternative solution to cardiologist, this study proposed a more effective model for heart disease detection by employing random forest and sequential feature selection (SFS). SFS is an effective approach to improve the performance of random forest model on heart disease detection. SFS removes unrelated features in heart disease dataset that tends to mislead random forest model on heart disease detection. Thus, removing inappropriate and duplicate features from the training set with sequential f
... Show MoreWe will also derive practical solutions using predictive analytics. And this would include application making predictions with real world example from University of Faculty of Chariaa of Fez. As soon as student enrolled to the university, they will certainly encounter many difficulties and problems which discourage their motivation towards their courses and which pushes them to leave their university.
The aim of our article is to manage an investigation of the issue of dropping out their studies. This investigation actively integrates the benefits ofmachine learning. Hence, we will concentrate on two fundamental strategies which are KNN, which depends on the idea of likeness among data; and the famous strategy SVM, which can break the
A system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.
The worldwide pandemic Coronavirus (Covid-19) is a new viral disease that spreads mostly through nasal discharge and saliva from the lips while coughing or sneezing. This highly infectious disease spreads quickly and can overwhelm healthcare systems if not controlled. However, the employment of machine learning algorithms to monitor analytical data has a substantial influence on the speed of decision-making in some government entities. ML algorithms trained on labeled patients’ symptoms cannot discriminate between diverse types of diseases such as COVID-19. Cough, fever, headache, sore throat, and shortness of breath were common symptoms of many bacterial and viral diseases.
This research focused on the nu
... Show More