Foreground object detection is one of the major important tasks in the field of computer vision which attempt to discover important objects in still image or image sequences or locate related targets from the scene. Foreground objects detection is very important for several approaches like object recognition, surveillance, image annotation, and image retrieval, etc. In this work, a proposed method has been presented for detection and separation foreground object from image or video in both of moving and stable targets. Comparisons with general foreground detectors such as background subtraction techniques our approach are able to detect important target for case the target is moving or not and can separate foreground object with high details.
One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreFacial identification is one of the biometrical approaches implemented for identifying any facial image with the use of the basic properties of that face. In this paper we proposes a new improved approach for face detection based on coding eyes by using Open CV's Viola-Jones algorithm which removes the falsely detected faces depending on coding eyes. The Haar training module in Open CV is an implementation of the Viola-Jones framework, the training algorithm takes as input a training group of positive and negative images, and generates strong features in the format of an XML file which is capable of subsequently being utilized for detecting the wanted face and eyes in images, the integral image is used to speed up Haar-like features calc
... Show MoreThe estimation of quantity of liquid that is collected from gas/oil separation system is a very complex task because it requires the application of the flash calculations which needs to solve the cubic equation of state and to use some numerical techniques. These difficulties can be overcome by a computer model which requires a lot of experimental data, long time, and experience.
This paper adopts a new technique to simplify this problem. It suggests new correlations for optimum separator pressure for separation station of heavy oils. The correlations have been achieved for two- and three- stage separation systems.
The co
The location of the study area is surging hills in Bongomene area, Gorontalo, Indonesia. In this study, a geological survey and sampling were taken, and then an analysis of the content of benthic foraminifera was performed in each sample. The study aims to discover the species of benthic foraminifera fossils and to determine the paleobathymetry to the studied regions. The results of the analysis contained seven fossils species, namely Ammomassilina alveoliniformis, Stelligerum astrononion, Haynesia germanica, Nonion fabum, Praeglobobulimina ovata, Rhabdammina discreata and Saccorhiza ramosa. Based on the content of benthic foraminifera fossils, paleobathymetry is determined as Middle Shelf to Outer
... Show MoreSmishing is the delivery of phishing content to mobile users via a short message service (SMS). SMS allows cybercriminals to reach out to mobile end users in a new way, attempting to deliver phishing messages, mobile malware, and online scams that appear to be from a trusted brand. This paper proposes a new method for detecting smishing by combining two detection methods. The first method is uniform resource locators (URL) analysis, which employs a novel combination of the Google engine and VirusTotal. The second method involves examining SMS content to extract efficient features and classify messages as ham or smishing based on keywords contained within them using four well-known classifiers: support vector machine (SVM), random
... Show MoreRecent researches showed that DNA encoding and pattern matching can be used for the intrusion-detection system (IDS), with results of high rate of attack detection. The evaluation of these intrusion detection systems is based on datasets that are generated decades ago. However, numerous studies outlined that these datasets neither inclusively reflect the network traffic, nor the modern low footprint attacks, and do not cover the current network threat environment. In this paper, a new DNA encoding for misuse IDS based on UNSW-NB15 dataset is proposed. The proposed system is performed by building a DNA encoding for all values of 49 attributes. Then attack keys (based on attack signatures) are extracted and, finally, Raita algorithm is app
... Show MoreMost recent studies have focused on using modern intelligent techniques spatially, such as those
developed in the Intruder Detection Module (IDS). Such techniques have been built based on modern
artificial intelligence-based modules. Those modules act like a human brain. Thus, they should have had the
ability to learn and recognize what they had learned. The importance of developing such systems came after
the requests of customers and establishments to preserve their properties and avoid intruders’ damage. This
would be provided by an intelligent module that ensures the correct alarm. Thus, an interior visual intruder
detection module depending on Multi-Connect Architecture Associative Memory (MCA)