The use of remote sensing technologies was gained more attention due to an increasing need to collect data for the environmental changes. Satellite image classification is a relatively recent type of remote sensing uses satellite imagery to indicate many key environment characteristics. This study aims at classifying and extracting vacant lands from high resolution satellite images of Baghdad city by supervised Classification tool in ENVI 5.3 program. The classification accuracy was 15%, which can be regarded as fairly acceptable given the difficulty of differentiating vacant land surfaces from other surfaces such as roof tops of buildings.
Multispectral remote sensing image segmentation can be achieved using a multithresholding technique. This paper studies the effect of changing the window size of the two dimensional (2D) fast Otsu algorithm that presented by Zhang. From the results, it shown that this method behaves as a search machine for the valleys (an automatic threshold), between the gray levels of the histogram with changing the size of slide window.
Keywords Image Segmentation, (2D) Fast Otsu method, Multithresholding, Automatic thresholding, (2D) histogram image.
Text documents are unstructured and high dimensional. Effective feature selection is required to select the most important and significant feature from the sparse feature space. Thus, this paper proposed an embedded feature selection technique based on Term Frequency-Inverse Document Frequency (TF-IDF) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) for unstructured and high dimensional text classificationhis technique has the ability to measure the feature’s importance in a high-dimensional text document. In addition, it aims to increase the efficiency of the feature selection. Hence, obtaining a promising text classification accuracy. TF-IDF act as a filter approach which measures features importance of the te
... Show MoreRestoration is the main process in many applications. Restoring an original image from a damaged image is the foundation of the restoring operation, either blind or non-blind. One of the main challenges in the restoration process is to estimate the degradation parameters. The degradation parameters include Blurring Function (Point Spread Function, PSF) and Noise Function. The most common causes of image degradation are errors in transmission channels, defects in the optical system, inhomogeneous medium, relative motion between object and camera, etc. In our research, a novel algorithm was adopted based on Circular Hough Transform used to estimate the width (radius, sigma) of the Point Spread Function. This algorithm is based o
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreProjects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postpo
Objective(s): To evaluate and compare between Health Promotion Program for the Prevention of Epidemics at Primary Health Care Centers in Baghdad City.
Methodology: A descriptive study, using the evaluation and comparative approaches, is conducted to evaluate health promotion program for the prevention of epidemics at primary health care centers in baghdad city from October 15th 2019 through March 1st 2020. A purposive, non-probability, sample of (42) health promotion unit officers were recruited from the same number of primary health care centers which were divided into (14) main, (14) sub and (14) family medicine primary health care centers i
... Show More