This paper is concerned with a Holling-II stage-structured predator-prey system in which predators are divided into an immature and mature predators. The aim is to explore the impact of the prey's fear caused by the dread of mature predators in a prey-predator model including intraspecific competitions and prey shelters. The theoretical study includes the local and global stability analysis for the three equilibrium points of the system and shows the prey's fear may lead to improving the stability at the positive equilibrium point. A numerical analysis is given to ensure the accuracy of the theoretical outcomes and to testify the conditions of stability of the system near the non-trivial equilibrium points.
In this paper, we establish the conditions of the occurrence of the local bifurcations, such as saddle node, transcritical and pitchfork, of all equilibrium points of an eco-epidemiological model consisting of a prey-predator model with SI (susceptible-infected) epidemic diseases in prey population only and a refuge-stage structure in the predators. It is observed that there is a transcritical bifurcation near the axial and free predator equilibrium points, near disease-free equilibrium point is a saddle-node bifurcation and near positive (coexistence) equilibrium point is a saddle-node bifurcation, a transcritical bifurcation and a pitchfork bifurcation. Further investigations for Hopf bifurcation near coexistence equilibrium point
... Show MoreThe interplay of species in a polluted environment is one of the most critical aspects of the ecosystem. This paper explores the dynamics of the two-species Lokta–Volterra competition model. According to the type I functional response, one species is affected by environmental pollution. Whilst the other degrades the toxin according to the type II functional response. All equilibrium points of the system are located, with their local and global stability being assessed. A numerical simulation examination is carried out to confirm the theoretical results. These results illustrate that competition and pollution can significantly change the coexistence and extinction of each species.
The present study was conducted to investigate effect of prey type on the relationship between age of females of Macrocyclops albidus and reproductive performance, which included each of mean number of nauplii, age at first brood, and age at first clutch. Results revealed that the correlation coefficient between the age at first brood and clutch and age of females fed on Artemia was significant P <0.05, being 0.65 and 0.81 respectively, while the correlations were not significant P>0.05 in females fed on mosquito larvae (Culex quinquefasciatus) and Paramecium nauplii. It was also found that the correlation coefficients between mean number of the nauplii and longevity in M. albidus were significant P<0.05 whereas, the correlations were not s
... Show MoreA modified Leslie-Gower predator-prey model with a Beddington-DeAngelis functional response is proposed and studied. The purpose is to examine the effects of fear and quadratic fixed effort harvesting on the system's dynamic behavior. The model's qualitative properties, such as local equilibria stability, permanence, and global stability, are examined. The analysis of local bifurcation has been studied. It is discovered that the system experiences a saddle-node bifurcation at the survival equilibrium point whereas a transcritical bifurcation occurs at the boundary equilibrium point. Additionally established are the prerequisites for Hopf bifurcation existence. Finally, using MATLAB, a numerical investigation is conducted to verify t
... Show MoreA modified Leslie-Gower predator-prey model with a Beddington-DeAngelis functional response is proposed and studied. The purpose is to examine the effects of fear and quadratic fixed effort harvesting on the system's dynamic behavior. The model's qualitative properties, such as local equilibria stability, permanence, and global stability, are examined. The analysis of local bifurcation has been studied. It is discovered that the system experiences a saddle-node bifurcation at the survival equilibrium point whereas a transcritical bifurcation occurs at the boundary equilibrium point. Additionally established are the prerequisites for Hopf bifurcation existence. Finally, using MATLAB, a numerical investigation is conducted to verify the va
... Show MoreIt is well known that the spread of cancer or tumor growth increases in polluted environments. In this paper, the dynamic behavior of the cancer model in the polluted environment is studied taking into consideration the delay in clearance of the environment from their contamination. The set of differential equations that simulates this epidemic model is formulated. The existence, uniqueness, and the bound of the solution are discussed. The local and global stability conditions of disease-free and endemic equilibrium points are investigated. The occurrence of the Hopf bifurcation around the endemic equilibrium point is proved. The stability and direction of the periodic dynamics are studied. Finally, the paper is ended with a numerical simul
... Show MoreBackground: Complete analysis of facial profile should also include an evaluation of soft tissue morphology. Materials and Method:The sample consisted of 90 Iraqi adults (45 males and 45 females) aged 18-25 years from Baghdad city divided into 3 groups according to the ANB angle with 30 subjects in each group (15 males and 15 females) for class I, II and III. Lateral cephalometric radiograph was taken for each subject and 8 angular and 5 linear measurements were identified and determined, t-test, ANOVA and LSD test were used to compare between both genders and between different classes. Results:Showed that females had greater angular measurements and smaller linear measurements with more lip prominence than males in all classes, there was m
... Show MoreThis article examines and proposes a dietary chain model with a prey shelter and alternative food sources. It is anticipated that mid-predators' availability is positively correlated with the number of refuges. The solution's existence and exclusivity are examined. It is established that the solution is bounded. It is explored whether all potential equilibrium points exist and are locally stable. The Lyapunov approach is used to investigate the equilibrium points' worldwide stability. Utilizing a Sotomayor theorem application, local bifurcation is studied. Numerical simulation is used to better comprehend the dynamics of the model and define the control set of parameters.
Buckling and free vibration analysis of laminated rectangular plates with uniform and non uniform distributed in-plane compressive loadings along two opposite edges is performed using the Ritz method. Classical laminated plate theory is adopted. The static component of the applied in- plane loading are assumed to vary according to uniform, parabolic or linear distributions. Initially, the plate membrane problem is solved using the Ritz method; subsequently, using Hamilton’s variational principle, linear homogeneous algebraic equations in terms of unknown are generated, the set of linear algebraic equations can be solved as an Eigen-value problem. Buckling loads for laminated plates with different combinations of bounda
... Show More