Preferred Language
Articles
/
ijs-5674
Brain MR Images Classification for Alzheimer’s Disease
...Show More Authors

    Alzheimer’s Disease (AD) is the most prevailing type of dementia. The prevalence of AD is estimated to be around 5% after 65 years old and is staggering 30% for more than 85 years old in developed countries. AD destroys brain cells causing people to lose their memory, mental functions and ability to continue daily activities. The findings of this study are likely to aid specialists in their decision-making process by using patients’ Magnetic Resonance Imaging (MRI) to distinguish patients with AD from Normal Control (NC). Performance evolution was applied to 346 Magnetic Resonance images from the Alzheimer's Neuroimaging Initiative (ADNI) collection. The Deep Belief Network (DBN) classifier was used to fulfill classification function. Weights were used to test the proposed method's recognition capacity, and the network was trained with a sample training set. As a result, this study offeres a new method for identifying Alzheimer's disease utilizing automated categorization. In tests, it performed admirably With 98.46% accuracy achieved for AD and NC studied classes when combining Gray Level Co-occurrence Matrix (GLCM) features with a DBN.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Future Scenario of Global Climate Map change according to the Köppen -Geiger Climate Classification
...Show More Authors

Earth’s climate changes rapidly due to the increases in human demands and rapid economic growth. These changes will affect the entire biosphere, mostly in negative ways. Predicting future changes will put us in a better position to minimize their catastrophic effects and to understand how humans can cope with the new changes beforehand. In this research, previous global climate data set observations from 1961-1990 have been used to predict the future climate change scenario for 2010-2039. The data were processed with Idrisi Andes software and the final Köppen-Geiger map was created with ArcGIS software. Based on Köppen climate classification, it was found that areas of Equator, Arid Steppes, and Snow will decrease by 3.9 %, 2.96%, an

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
Development of a Job Applicants E-government System Based on Web Mining Classification Methods
...Show More Authors

     Governmental establishments are maintaining historical data for job applicants for future analysis of predication, improvement of benefits, profits, and development of organizations and institutions. In e-government, a decision can be made about job seekers after mining in their information that will lead to a beneficial insight. This paper proposes the development and implementation of an applicant's appropriate job prediction system to suit his or her skills using web content classification algorithms (Logit Boost, j48, PART, Hoeffding Tree, Naive Bayes). Furthermore, the results of the classification algorithms are compared based on data sets called "job classification data" sets. Experimental results indicate

... Show More
View Publication Preview PDF
Scopus (5)
Scopus Crossref
Publication Date
Tue Jan 04 2022
Journal Name
Iraqi Journal Of Science
Proposed Handwriting Arabic Words classification Based On Discrete Wavelet Transform and Support Vector Machine
...Show More Authors

A proposed feature extraction algorithm for handwriting Arabic words. The proposed method uses a 4 levels discrete wavelet transform (DWT) on binary image. sliding window on wavelet space and computes the stander derivation for each window. The extracted features were classified with multiple Support Vector Machine (SVM) classifiers. The proposed method simulated with a proposed data set from different writers. The experimental results of the simulation show 94.44% recognition rate.

View Publication Preview PDF
Publication Date
Fri Jul 01 2022
Journal Name
Iraqi Journal Of Science
The Effect of Disease and Harvesting on The Dynamics of Prey-Predator System
...Show More Authors

In this paper an eco-epidemiological system has been proposed and studied analytically as well as numerically. The boundedness, existence and uniqueness of the solution are discussed. The local and global stability of all possible equilibrium point are investigated. The global dynamics is studied numerically. It is obtained that system has rich in dynamics including Hopf bifurcation.

View Publication Preview PDF
Publication Date
Wed Oct 31 2018
Journal Name
Iraqi Journal Of Science
The relationship between Chlamydia pneumoniae infection and TNF-α in cardiovascular disease patients
...Show More Authors

Over the last few years the role of microorganisms in the pathogenesis of atherosclerosis has been widely discussed.  Advance in basic science have established a fundamental role for inflammation immediating all stages of cardiovascular diseases. Chlamydia pneumoniae activates immune cells to produce cytokines such us TNF-α that are important contributor to atherosclerosis. All blood samples were assayed for molecular detection of Chlamydia pneumoniae by using conventional polymerase chain reaction (PCR) relying on16SrRNAand the level of serum TNF-α measured by enzyme linked immunosorbent assay (ELISA).Seventy patients who suffering from CVD (angina, myocardial Infarction and atherosclerosis) aged between 33-86 y

... Show More
View Publication Preview PDF
Publication Date
Thu Apr 01 2010
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
The Invariant Moments Based With Wavelet Used To Decide the Authintication and Originality of Images
...Show More Authors

Publication Date
Sat Apr 30 2022
Journal Name
Eastern-european Journal Of Enterprise Technologies
Improvement of noisy images filtered by bilateral process using a multi-scale context aggregation network
...Show More Authors

Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Jan 10 2015
Journal Name
British Journal Of Applied Science & Technology
The Use of Cubic Bezier Interpolation, Biorthogonal Wavelet and Quadtree Coding to Compress Color Images
...Show More Authors

In this paper, an efficient method for compressing color image is presented. It allows progressive transmission and zooming of the image without need to extra storage. The proposed method is going to be accomplished using cubic Bezier surface (CBI) representation on wide area of images in order to prune the image component that shows large scale variation. Then, the produced cubic Bezier surface is subtracted from the image signal to get the residue component. Then, bi-orthogonal wavelet transform is applied to decompose the residue component. Both scalar quantization and quad tree coding steps are applied on the produced wavelet sub bands. Finally, adaptive shift coding is applied to handle the remaining statistical redundancy and attain e

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Automatic Segmentation and Identification of Abnormal Breast Region in Mammogram Images Based on Statistical Features
...Show More Authors

Breast cancer is one of the most common malignant diseases among women;
Mammography is at present one of the available method for early detection of
abnormalities which is related to breast cancer. There are different lesions that are
breast cancer characteristic such as masses and calcifications which can be detected
trough this technique. This paper proposes a computer aided diagnostic system for
the extraction of features like masses and calcifications lesions in mammograms for
early detection of breast cancer. The proposed technique is based on a two-step
procedure: (a) unsupervised segmentation method includes two stages performed
using the minimum distance (MD) criterion, (b) feature extraction based on Gray

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 16 2022
Journal Name
Iraqi Journal Of Science
Efficient method to Recognition of Anemia Images based on Moment Invariants and Decision tree classifier
...Show More Authors

Anemia is one of the common types of blood diseases, it lead to lack of number of RBCs (Red Blood Cell) and amount hemoglobin level in the blood is lower than normal.
In this paper a new algorithm is presented to recognize Anemia in digital images based on moment variant. The algorithm is accomplished using the following phases: preprocessing, segmentation, feature extraction and classification (using Decision Tree), the extracted features that are used for classification are Moment Invariant and Geometric Feature.
The Best obtained classification rates was 84% is obtained when using Moment Invariants features and 74 % is obtained when using Geometric Feature. Results indicate that the proposed algorithm is very effective in detect

... Show More
View Publication Preview PDF