Alzheimer’s Disease (AD) is the most prevailing type of dementia. The prevalence of AD is estimated to be around 5% after 65 years old and is staggering 30% for more than 85 years old in developed countries. AD destroys brain cells causing people to lose their memory, mental functions and ability to continue daily activities. The findings of this study are likely to aid specialists in their decision-making process by using patients’ Magnetic Resonance Imaging (MRI) to distinguish patients with AD from Normal Control (NC). Performance evolution was applied to 346 Magnetic Resonance images from the Alzheimer's Neuroimaging Initiative (ADNI) collection. The Deep Belief Network (DBN) classifier was used to fulfill classification function. Weights were used to test the proposed method's recognition capacity, and the network was trained with a sample training set. As a result, this study offeres a new method for identifying Alzheimer's disease utilizing automated categorization. In tests, it performed admirably With 98.46% accuracy achieved for AD and NC studied classes when combining Gray Level Co-occurrence Matrix (GLCM) features with a DBN.
The research problem focused through the researcher's experience in the gymnastics game and the lack of use of educational models that give the student an important role in the educational process, so it became necessary to identify the type of prevailing style for students, and the need for diversity in the use of educational models based on scientific theories, including the Daniel Document model. Based on three theories of learning, which are structural, behavioral, and meaningful learning. The research aimed to identify the effect of using the Daniel model for people with two types of brain control (left and right) to learn the skill of the Cartwheel in artistic gymnastics for students of the second stage. The researcher used the experi
... Show MoreAfamin, which is a human plasma glycoprotein, a putative multifunctional transporter of hydrophobic molecules and a marker for metabolic syndrome. Afamin concentration have been proposed to have a significant role as a predictor of metabolic disorders. Since NAFLD is associated with metabolic risk factors, e.g., dyslipidemia, insulin resistance and visceral obesity, it is considered as the hepatic manifestation of the metabolic syndrome. The objective of this study is to determine Afamin levels in hypothyroid patients with and without fatty liver disease and compare the results with controls. Also to study the relationship of Afamin level with the Anthropometric and Clinical Features (Age, Gender, BMI and Duration of Hypothyroidism) , Serum
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
Variation in DNA, and genes to a lesser or greater extent, can play an important role in most diseases; that is because this variation in will reflect and affect the function of DNA, and genes (combined genes and DNA or separately). This can be affected by environment, life style, as well as the inheriting from parents and previous generations. All these factors can contribute in human diseases. There are different alterations in genes, like imbalance and inequality in chromosomes, disorder in gene (deficiency in gene, which could be complex or single disorder), and cancer. In the last decades, scientists were focus on medicine and genetics; they pay an extensive attention to reach better understanding about diseases and their cause
... Show MoreThe aim of this study to identify patterns of cerebral control (right and left) for second grade students in the collage of physical education and sports science of the University of Baghdad, as well as identify the definition of theThe Effect of Using the Bybee Strategy(5ES) according to Brain Control Patterns in Learning a Kinetic Series on Floor exercises in Artistic Gymnastics for menمجلة الرياضة المعاصرةالمجلد 19 العدد 1 عام 2020effect using the (Bybee) strategy (5ES) according to brain control patterns inlearning a Kinetic series on floor exercises In artistic gymnastics for men, andidentify the best combination between the four research groups learn, use Finderexperimental method research sample consi
... Show MoreIn this work, satellite images classification for Al Chabaish marshes and the area surrounding district in (Dhi Qar) province for years 1990,2000 and 2015 using two software programming (MATLAB 7.11 and ERDAS imagine 2014) is presented. Proposed supervised classification method (Modified Vector Quantization) using MATLAB software and supervised classification method (Maximum likelihood Classifier) using ERDAS imagine have been used, in order to get most accurate results and compare these methods. The changes that taken place in year 2000 comparing with 1990 and in year 2015 comparing with 2000 are calculated. The results from classification indicated that water and vegetation are decreased, while barren land, alluvial soil and shallow water
... Show MoreCrime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or livin
... Show MoreAge is a predominant parameter for arbitrating an individual, for security and access concerns of the data that exist in cyber space. Nowadays we find a rapid growth in unethical practices from youngsters as well as skilled cyber users. Facial image renders a variety of information that can be used, when processed to ascertain the age of individuals. In this paper, local facial features are considered to predict the age group, where local Binary Pattern (LBP) is extracted from four regions of facial images. The prominent areas where wrinkles are developed naturally in human as age increases are taken for feature extraction. Further these feature vectors are subjected to ensemble techniques that increases th
... Show More