The Tigris River in Iraq is of highly meandering in several of its parts. So, the largest meandering inside Baghdad City, is in Al-Jadriyah. During its course, the Tigris Riverbanks are facing erosion frequently due to alteration in the geomorphological and hydrological characteristics affecting the river channel. The entire length of Tigris River from the northern entrance of Baghdad to the convergence with Diyala River at southern of Baghdad is about 49 km length. The Tigris River is suffering from the erosion, deposition, and migration conditions. The river migration was found as maximum in the left bank at the side of the University, and lesser in the right bank in the opposite side, Dora. The aim of this study is to measure the magnitude of changes happened to the Tigris Riverbanks adjacent to the Baghdad University Camp in Al-Jadriyah for a period of last fifty years extended between 1962 and 2013, using Remote Sensing (RS) and Geographic Information System (GIS) techniques. Symmetrical Difference Analytical method was used to obtain changes for Tigris Riverbanks in the study area. The obtained results in this study demonstrate that Remote Sensing and Aerial Photography are important sources of data in monitoring and detecting the movement of Tigris riverbanks. Accordingly, the measured areas of deposition and erosion are (657 073 m2) and (173 087 m2) respectively, and the ratio between them was 3.83 to 1.
The effective insulation design of the stress grading (SG) system in form-wound stator coils is essential for preventing partial discharges and excessive heat generation under pulse-width modulation excitation. This paper proposes a method to find the optimal insulation design of the SG system aimed at reducing the dielectric and thermal stresses in the machine coil. The non-uniform transmission line model is used to predict the voltage propagation along the overhang, SG, and slot regions considering the variation in the physical properties of the insulation layers. The machine coil parameters for different insulation materials are calculated by using the finite element method. Two optimization algorithms, fmincon and particle swarm optimiz
... Show MoreKnowledge of the distribution of the rock mechanical properties along the depth of the wells is an important task for many applications related to reservoir geomechanics. Such these applications are wellbore stability analysis, hydraulic fracturing, reservoir compaction and subsidence, sand production, and fault reactivation. A major challenge with determining the rock mechanical properties is that they are not directly measured at the wellbore. They can be only sampled at well location using rock testing. Furthermore, the core analysis provides discrete data measurements for specific depth as well as it is often available only for a few wells in a field of interest. This study presents a methodology to generate synthetic-geomechani
... Show MoreMassive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless communications networks. However, for massive-MIMO systems to realize their maximum potential gain, sufficiently accurate downlink (DL) channel state information (CSI) with low overhead to meet the short coherence time (CT) is required. Therefore, this article aims to overcome the technical challenge of DL CSI estimation in a frequency-division-duplex (FDD) massive-MIMO with short CT considering five different physical correlation models. To this end, the statistical structure of the massive-MIMO channel, which is captured by the physical correlation is exploited to find sufficiently
... Show MoreIn this work, two different laser dye solutions were used to host highly-pure silicon nitride nanoparticles as scattering centers to fabricate random gain media. The laser dye was dissolved in three different solvents (ethanol, methanol and acetone) and the final results were obtained for methanol only. The silicon nitride nanoparticles were synthesized by dc reactive magnetron sputtering technique with average particle size of 35 nm. The random gain medium was made as a solid rod with high spectral efficiency and low production cost. Optical emission with narrow linewidth was detected at 532-534 nm as 9 mg of silicon nitride nanoparticles were added to the 10 -5 M dye solution. The FWHM of 0.3 and 3.52 nm was determined for Rhodamine B and
... Show MoreThis paper presents an experimental study for strengthening existing columns against axial compressive loads. The objective of this work is to study the behavior of concrete square columns strengthening with circulation technique. In Iraq, there are significantly more reinforced rectangular and square columns than reinforced circular columns in reinforced concrete buildings. Moreover, early research studies indicated that strengthening of rectangular or square columns using wraps of CFRP (Carbon Fiber Reinforced Polymer) provided rather little enhancement to their load-carrying capacity. In this paper, shape modification technique was performed to modify the shape (cross section) of the columns from square columns into circular colu
... Show MoreAsthma is a chronic respiratory disorder of airways characterized by inflammation, hyperresponsiveness, inflammatory cell infiltration, mucous secretion, and remodelling. Ammi majus is medicinal plant belong to family of Apiaceous which has anti-inflammatory and antioxidant activities. This study designed to investigate of anti-asthmatic activity of alcoholic extract of Ammi majus in improvement of asthma. Forty-eight healthy female mice divided to six groups Group I: the negative control group (distal water only), Group II: Positive control group (ovalbumin group), Group III: Ammi majus (64 mg/kg/day) with sensitization, Group IV:Ammi majus (128 mg/kg/day) with sensitization, Group V: Ammi majus (64 mg/kg/day) without sensitiza
... Show MoreThis study was conducted in 2018, at Technical College of Applied Sciences, Sulaimani Polytechnic University, and Kurdistan Region-Iraq. The aim of the study was to determinate nutritional compositions and some elemental contents in marketable white button mushroom (Agaricus bisporus) that is collected in local markets of Kurdistan Region-Iraq. Five different samples (A: Penjwen product fresh, B: Sulaimani product fresh, C: American caned, D: Valencia Netherlandcaned and E: Erbil product fresh) were collected to be observed. The elements were analyzed by Atomic Absorption Spectrometry methods, and their chemical compassions were determined, too. The collected data were analyzed by One Way ANOVA. The highest fat, protein, fiber and dry matte
... Show MoreA particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
The complexity and partially defined nature of jet grouting make it hard to predict the performance of grouted piles. So the trials of cement injection at a location with similar soil properties as the erecting site are necessary to assess the performance of the grouted piles. Nevertheless, instead of executing trial-injected piles at the pilot site, which wastes money, time, and effort, the laboratory cement injection devices are essential alternatives for evaluating soil injection ability. This study assesses the performance of a low-pressure laboratory grouting device by improving loose sandy soil injected using binders formed of Silica Fume (SF) as a chemical admixture (10% of Ordinary Portland Cement OPC mass) to di
... Show MoreBackground: The anticancer impact of Epigallocatechin gallate (EGCG) the highly active polyphenol of green tea was abundantly studied. Though, the exact mechanism of its cytotoxicity is still under investigation. Objectives: Hence, the current study designed to investigate the molecular target of EGCG in HepG2 cells on thirteen autophagy- and/or apoptosis- related genes. Methods: The apoptosis detection analyses such as flow cytometry and dual apoptosis assay were used. The genes expression profile was explored by the real-time quantitative-PCR. Results: EGCG increases G0/G1 cell cycle arrest and the real-time apoptosis markers proteins leading to stimulate apoptos
... Show More