In this paper we offer two new subclasses of an open unit disk of r-fold symmetric bi-univalent functions. The Taylor-Maclaurin coefficients have their coefficient bounds calculated. Furthermore, for functions in , we have solved Fekete- functional issues. For the applicable classes, there are also a few particular special motivator results.
In this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between t
... Show MoreIn this paper, we introduce a new class of sets, namely , s*g-ï¡-open sets and we show that the family of all s*g-ï¡-open subsets of a topological space ) ,X( ï´ from a topology on X which is finer than ï´ . Also , we study the characterizations and basic properties of s*g-ï¡open sets and s*g-ï¡-closed sets . Moreover, we use these sets to define and study a new class of functions, namely , s*g- ï¡ -continuous functions and s*g- ï¡ -irresolute functions in topological spaces . Some properties of these functions have been studied .
The process of converting coordinates is, still, considered an important and difficult issue due to the way of conversion from geographic ellipsoidal system to the projected flat system. The most common method uses contiguous UTM system as one of the most accurate systems in the conversion process, but the users of the
system face problems related to contiguity, especially at the large areas that lie within more than one zone. The aim of the present research is to solve the problem related to the multiple zones coverage found in the Iraqi territory using a mathematical model based on the use of Taylor series. The most accurate conversion equation used in this paper was based on the 4th order polynomial of two variables. The calculatio
The ground state densities of neutron-rich (11Be,15C) and proton-rich (9C,12N,23Al) exotic nuclei are investigated using a two-body nucleon density distribution (2BNDD) with two frequency shells model (TFSM). The structure of the valence one-neutron of 11Be is in pure (1p1/2) and of 15C in pure (1d5/2) configuration, while the structure of valence one-proton configuration is in 9C,12N are to be in a pure (1p1/2) and 23Al in a pure (2s1/2) . For our studied nuclei, an efficient (2BNDD) operator for point nucleon system folded with two-body correlation operator's functions is u
... Show MoreThe modern systems that have been based upon the hash function are more suitable compared to the conventional systems; however, the complicated algorithms for the generation of the invertible functions have a high level of time consumption. With the use of the GAs, the key strength is enhanced, which results in ultimately making the entire algorithm sufficient. Initially, the process of the key generation is performed by using the results of n-queen problem that is solved by the genetic algorithm, with the use of a random number generator and through the application of the GA operations. Ultimately, the encryption of the data is performed with the use of the Modified Reverse Encryption Algorithm (MREA). It was noticed that the
... Show MoreThis book includes three main chapters: 1. Functions & Their Derivatives. 2. Minimum, Maximum and Inflection points. 3. Partial Derivative. In addition to many examples and exercises for the purpose of acquiring the student's ability to think correctly in solving mathematical questions.
The purpose of this paper is to introduce and study the concepts of fuzzy generalized open sets, fuzzy generalized closed sets, generalized continuous fuzzy proper functions and prove results about these concepts.
Cloth simulation and animation has been the topic of research since the mid-80's in the field of computer graphics. Enforcing incompressible is very important in real time simulation. Although, there are great achievements in this regard, it still suffers from unnecessary time consumption in certain steps that is common in real time applications. This research develops a real-time cloth simulator for a virtual human character (VHC) with wearable clothing. This research achieves success in cloth simulation on the VHC through enhancing the position-based dynamics (PBD) framework by computing a series of positional constraints which implement constant densities. Also, the self-collision and collision wit
... Show MoreIn this paper, we introduce an approximate method for solving fractional order delay variational problems using fractional Euler polynomials operational matrices. For this purpose, the operational matrices of fractional integrals and derivatives are designed for Euler polynomials. Furthermore, the delay term in the considered functional is also decomposed in terms of the operational matrix of the fractional Euler polynomials. It is applied and substituted together with the other matrices of the fractional integral and derivative into the suggested functional. The main equations are then reduced to a system of algebraic equations. Therefore, the desired solution to the original variational problem is obtained by solving the resul
... Show MoreComplex-valued regular functions that are normalized in the open unit disk are vastly studied. The current study introduces a new fractional integrodifferential (non-linear) operator. Based on the pre-Schwarzian derivative, certain appropriate stipulations on the parameters included in this con-structed operator to be univalent and bounded are investigated and determined.