Preferred Language
Articles
/
ijs-4513
Study of Matter Density Distributions, Elastic Electron Scattering Form factors and Root Mean Square Radii of 9C, 12N, 23Al, 11Be and 15C Exotic Nuclei
...Show More Authors

    The ground state densities of neutron-rich (11Be,15C) and proton-rich (9C,12N,23Al) exotic nuclei are investigated using a two-body nucleon density distribution (2BNDD) with two frequency shells model (TFSM). The structure of the valence one-neutron of 11Be is in pure (1p1/2) and of 15C in pure (1d5/2) configuration, while the structure of valence one-proton configuration is in 9C,12N are to be in a pure (1p1/2) and 23Al in a pure  (2s1/2) . For our studied nuclei, an efficient (2BNDD) operator for point nucleon system folded with two-body correlation operator's functions is  used to investigate nuclear matter density distributions, elastic electron scattering form factors, and root-mean square (rms) radii. The effect of the strong tensor force (TC) in nucleon-nucleon forces is taken into account in the correlation. The wave functions of a single particle harmonic oscillator are used with two different oscillator size parameters, βc and βv, the former for core (inner) orbits and the latter for valence (halo) orbits. The measured matter density distributions of these nuclei clearly show the long tail results. The plane wave born approximation (PWBA) is used to investigate the elastic electron scattering form factors for these exotic nuclei.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Iraqi Journal Of Physics
Matter Density Distributions, Root-mean Square Radii and Elastic Electron Scattering Form Factors of Some Exotic Nuclei (17B, 11Li, 8He)
...Show More Authors

The two-neutron halo-nuclei (17B, 11Li, 8He) was investigated using a two-body nucleon density distribution (2BNDD) with two frequency shell model (TFSM). The structure of valence two-neutron of 17B  nucleus in a pure (1d5/2) state and in a pure (1p1/2) state for  11L and 8He nuclei. For our tested nucleus, an efficient (2BNDD's) operator for point nucleon system folded with two-body correlation operator's functions was used to investigate nuclear matter density distributions, root-mean square (rms) radii, and elastic electron scattering form factors. In the nucleon-nucleon forces the correlation took account of

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 02 2023
Journal Name
Iraqi Journal Of Science
Study of Density Distributions, Elastic Electron Scattering form factors and reaction cross sections of 9C, 12N and 23Al exotic nuclei
...Show More Authors

The ground state densities of unstable proton-rich 9C, 12N and 23Al exotic nuclei are studied via the framework of the two-frequency shell model (TFSM) and the binary cluster model (BCM). In TFSM, the single particle harmonic oscillator wave functions are used with two different oscillator size parameters βc and βv, where the former is for the core (inner) orbits and the latter is for the valence (halo) orbits. In BCM, the internal densities of the clusters are described by single particle Gaussian wave functions. The long tail performance is clearly noticed in the calculated proton and matter density distributions of these nuclei. The structure of the valence proton in 9C and 12N is a pure (1p1/2) configuration while that for 23Al is

... Show More
View Publication Preview PDF
Publication Date
Sun Oct 22 2023
Journal Name
Iraqi Journal Of Science
Study of Matter Density Distributions, Elastic Electron Scattering form Factors and Reaction Cross Sections of 8He And 17B Exotic Nuclei
...Show More Authors

The ground state densities of unstable neutron-rich 8He and 17B exotic nuclei are studied via the framework of the two-frequency shell model (TFSM) and the binary cluster model (BCM). In TFSM, the single particle harmonic oscillator wave functions are used with two different oscillator size parameters βc and βv where the former is for the core (inner) orbits and the latter is for the valence (halo) orbits. In BCM, the internal densities of the clusters are described by single particle Gaussian wave functions. Shell model calculations for the two valence neutrons in 8He and 17B are performed via the computer code OXBASH. The long tail performance is clearly noticed in the calculated neutron and matter density distributions of these nucl

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
Study of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei
...Show More Authors

In this work, the calculation of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei are calculated. Each nuclide under study are divided into two parts; one for core part and the second for halo part. The core part are studied using harmonic-oscillator radial wave functions, while the halo part are studied using the radial wave functions of Woods-Saxon potential. A very good agreement are obtained with experimental data for matter density distributions and available size radii. Besides, the quadrupole moment for 11Li are generated.

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Feb 17 2019
Journal Name
Iraqi Journal Of Physics
Density distributions, form factors and reaction cross sections for exotic 11Be and 15C nuclei
...Show More Authors

The ground state proton, neutron and matter densities of exotic 11Be and 15C nuclei are studied by means of the TFSM and BCM. In TFSM, the calculations are based on using different model spaces for the core and the valence (halo) neutron. Besides single particle harmonic oscillator wave functions are employed with two different size parameters  Bc and Bv.  In BCM, the halo nucleus is considered as a composite projectile consisting of core and valence clusters bounded in a state of relative motion. The internal densities of the clusters are described by single particle Gaussian wave functions.

 Elastic electron scattering proton f

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 26 2019
Journal Name
Iraqi Journal Of Science
Density Distributions and Elastic Electron Scattering Form Factors of Proton-rich 8B, 17F, 17Ne, 23Al and 27P Nuclei
...Show More Authors

In this work, the nuclear density distributions, size radii and elastic electron scattering form factors are calculated for proton-rich 8B, 17F, 17Ne, 23Al and 27P nuclei using the radial wave functions of Woods-Saxon potential. The parameters of such potential for nuclei under study are generated so as to reproduce the experimentally available size radii and binding energies of the last nucleons on the Fermi surface.

View Publication Preview PDF
Scopus (10)
Crossref (5)
Scopus Crossref
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Study of charge density distributions, elastic charge form factors and root-mean square radii for 4He, 12C and 16O nuclei using Woods- Saxon and harmonic-oscillator potentials
...Show More Authors

The nuclear charge density distributions, form factors and
corresponding proton, charge, neutron, and matter root mean square
radii for stable 4He, 12C, and 16O nuclei have been calculated using
single-particle radial wave functions of Woods-Saxon potential and
harmonic-oscillator potential for comparison. The calculations for the
ground charge density distributions using the Woods-Saxon potential
show good agreement with experimental data for 4He nucleus while
the results for 12C and 16O nuclei are better in harmonic-oscillator
potential. The calculated elastic charge form factors in Woods-Saxon
potential are better than the results of harmonic-oscillator potential.
Finally, the calculated root mean square

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Wed Nov 24 2021
Journal Name
Iraqi Journal Of Science
Theoretical Study of Nuclear Density Distributions and Elastic Electron Scattering form Factors for Some Halo Nuclei
...Show More Authors

The nuclear matter density distributions, elastic electron scattering charge form
factors and root-mean square (rms) proton, charge, neutron and matter radii are
studied for neutron-rich 6,8He and 19C nuclei and proton-rich 8B and 17Ne nuclei. The
local scale transformation (LST) are used to improve the performance radial wave
function of harmonic-oscillator wave function in order to generate the long tail
behavior appeared in matter density distribution at high . A good agreement results
are obtained for aforementioned quantities in the used model.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Iraqi Journal Of Physics
Elastic Form Factors and Matter Density Distributions of Some Neutron-Rich Nuclei
...Show More Authors

The ground-state properties of exotic 18N and 20F nuclei, including the neutron, proton and matter densities and related  radii are investigated using the two-body model of   within Gaussian (GS) and Woods Saxon (WS) wave functions. The long tail is evident in the computed neutron and matter densities of these nuclei. The plane wave Born approximation (PWBA) is  calculate the elastic form factors of these exotic nuclei. The variation in the proton density distributions due to the presence of the extra neutrons in 18N and 20F leads to a major difference between the elastic form factors of these exotic nuclei and their stable isotopes 14N and 19F. The reaction c

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon May 28 2018
Journal Name
Iraqi Journal Of Science
Theoretical Study of Nuclear Density Distributions and Elastic Electron Scattering Form Factors of Some Proton Halo Nuclei (17Ne and 8B)
...Show More Authors

     Theoretical investigation of proton halo-nucleus (8B and 17Ne) has revealed that the valence protons are to be in pure (1p1/2)1 orbit for 8B and (1d3/2)2 orbit for 17Ne.  The nuclear matter density distributions, the elastic electron scattering form factors and (proton, charge, neutron and matter) root-mean square (rms) are studied for our tested nuclei, through an effective two-body density operator for point nucleon system folded with two-body full correlation operator's functions. The full correlation (FC's ) takes account of the effect for the strong short range repulsion (SRC's) and the strong tensor force (TC's) in

... Show More
View Publication Preview PDF