Preferred Language
Articles
/
ijs-5551
An Internet of Things Botnet Detection Model Using Regression Analysis and Linear Discrimination Analysis

The Internet of Things (IoT) has become a hot area of research in recent years due to the significant advancements in the semiconductor industry, wireless communication technologies, and the realization of its ability in numerous applications such as smart homes, health care, control systems, and military. Furthermore, IoT devices inefficient security has led to an increase cybersecurity risks such as IoT botnets, which have become a serious threat. To counter this threat there is a need to develop a model for detecting IoT botnets.

This paper's contribution is to formulate the IoT botnet detection problem and introduce multiple linear regression (MLR) for modelling IoT botnet features with discriminating capability and alleviating the challenges of IoT detection. In addition, a linear discrimination analysis (LDA) model for distinguishing between normal activities and IoT botnets was developed.

Network-based detection of IoT (N-BaIoT) dataset was used to evaluate the performance of the proposed IoT botnet detection model in terms of accuracy, precision, and detection rate.  Experimental results revealed that the proposed IoT botnet detection model provides a relevant feature subset and preserves high accuracy when compared with state-of-the-art and baseline methods, particularly LDA.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of the method of partial least squares and the algorithm of singular values decomposion to estimate the parameters of the logistic regression model in the case of the problem of linear multiplicity by using the simulation

The logistic regression model is an important statistical model showing the relationship between the binary variable and the explanatory variables.                                                        The large number of explanations that are usually used to illustrate the response led to the emergence of the problem of linear multiplicity between the explanatory variables that make estimating the parameters of the model not accurate.    

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
The use of the Principal components and Partial least squares methods to estimate the parameters of the logistic regression model in the case of linear multiplication problem

Abstract

  The logistic regression model is one of the nonlinear models that aims at obtaining highly efficient capabilities, It also the researcher an idea of the effect of the explanatory variable on the binary response variable.                                                                                  &nb

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Numerical Investigation Using Harmonic and Transient Analysis To Rotor Dynamics

The rotor dynamics generally deals with vibration of rotating structures. For designing rotors of a high speeds, basically its important to take into account the rotor dynamics characteristics. The modeling features for rotor and bearings support flexibility are described in this paper, by taking these characteristics of rotor dynamics features into standard Finite Element Approach (FEA) model. Transient and harmonic analysis procedures have been found by ANSYS, the idea has been presented to deal with critical speed calculation. This papers shows how elements BEAM188 and COMBI214 are used to represent the shaft and bearings, the dynamic stiffness and damping coefficients of journal bearings as a matrices have been found

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
A Review for Arabic Sentiment Analysis Using Deep Learning

     Sentiment Analysis is a research field that studies human opinion, sentiment, evaluation, and emotions towards entities such as products, services, organizations, events, topics, and their attributes. It is also a task of natural language processing. However, sentiment analysis research has mainly been carried out for the English language. Although the Arabic language is one of the most used languages on the Internet, only a few studies have focused on Arabic language sentiment analysis.

     In this paper, a review of the most important research works in the field of Arabic text sentiment analysis using deep learning algorithms is presented. This review illustrates the main steps used in these studies, which include

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jul 31 2022
Journal Name
Iraqi Journal Of Science
Mathematical Analysis of Peristaltic Pumps for Fene-P model subject to Hall and Joule impact

    A mathematical model is developed to discuss the impact of the Hall current and the Joule heating on the peristaltic flux of finitely extensible nonlinear elastic Peterlin (FENE-P) fluid in a tapered tube with mild stenosis. The fluid movement  along the wall surface resulted from the sinusoidal wave flowing with constant speed. Conditions of velocity and thermal slip are applied. Lubrication approximation is adopted to modify the governing flow problem. To discover the solution to a system of equations, the regular perturbation approach is used. The effects of the different physical parameters are debated and graphically shown in a set of figures. It is discovered that as the Hall current parameter is increased and the Hartman n

... Show More
Scopus (3)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Nov 21 2019
Journal Name
Journal Of Engineering
Comparative Permeability Estimation Method and Identification of Rock Types using Cluster Analysis from Well Logs and Core Analysis Data in Tertiary Carbonate Reservoir-Khabaz Oil Field

Characterization of the heterogonous reservoir is complex representation and evaluation of petrophysical properties and application of the relationships between porosity-permeability within the framework of hydraulic flow units is used to estimate permeability in un-cored wells. Techniques of flow unit or hydraulic flow unit (HFU) divided the reservoir into zones laterally and vertically which can be managed and control fluid flow within flow unit and considerably is entirely different with other flow units through reservoir. Each flow unit can be distinguished by applying the relationships of flow zone indicator (FZI) method. Supporting the relationship between porosity and permeability by using flow zone indictor is ca

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Thu Sep 15 2022
Journal Name
Alustath Journal
Semantic Analysis of Proverbs: A Conversation Analysis

Proverbs are considered as a major source of ancient events and happenings. Similar to other past events related to life, proverbs have many important and famous values in people's life. This study will shed lights on the use of proverbs as short sentences based on long experiences. The aim of the study is to explicate the roles, and the importance of proverbs in our life and how they are used to convey thoughts to people throughout simple words with denotation. Thus, proverbs explicate the truth and experience of our grandfathers when directed for criticism. Few proverbs were used by writers to criticize, mimic and reprint their personalities. Hence, proverbs will achieve portions of the unique roles of understanding. The model to

... Show More
Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Tourism Companies Assessment via Social Media Using Sentiment Analysis

In recent years, social media has been increasing widely and obviously as a media for users expressing their emotions and feelings through thousands of posts and comments related to tourism companies. As a consequence, it became difficult for tourists to read all the comments to determine whether these opinions are positive or negative to assess the success of a tourism company. In this paper, a modest model is proposed to assess e-tourism companies using Iraqi dialect reviews collected from Facebook. The reviews are analyzed using text mining techniques for sentiment classification. The generated sentiment words are classified into positive, negative and neutral comments by utilizing Rough Set Theory, Naïve Bayes and K-Nearest Neighbor

... Show More
Scopus (9)
Crossref (5)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Identify and Diagnose the Causes of Financial Funding using the Root Cause Analysis Technique

The analysis of the root cause techniques is a reasonable option to be made to assess the root causes of the funding of construction projects. There are a variety of issues related to financing in construction industries in Iraq. The root,cause analysis is the impact of security and social conditions on financial funding. Variety tools of root cause analysis have originated from literature, as common methods for the detection of root causes. The purpose of this study was to identify and diagnose causes that lead to obstruction of financial funding in the construction projects in the republic of Iraq from the contractors' point of view and their interaction with a number of variables. The study diagnosed nine causes of fi

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF