Ni2O3 nanomaterial, a phase of nickel oxide, is synthesized by a simple chemical process. The pure raw materials used in the present process were nickel chloride hexahydrate NiCl2.6H2O and potassium hydroxide KOH by utilizing temperature at 250 oC for 2 hour. The structural, morphological and optical properties of the synthesized specimens of Ni2O3 were investigated employing diverse techniques such as XRD, AFM, SEM and UV-Vis, respectively. The XRD technique confirms the presence of Ni2O3 nanomaterial with crystal size of 57.083 nm which indexing to the (2θ) of 31.82; this results revealed the Ni2O3 was a phase of nickel oxide with Nano structure. The synthesized Ni2O3 will be useful in manufacturng electrodes materials for fuel cell and production catalytic materials for electrolysis cell.
Triticale is being evaluated as a substitute for corn in animal feed and as a forage crop for Florida. Storage of triticale seed is difficult in Florida's hot and humid climate, and more information about the relationships between equilibrium moisture content (EMC) and equilibrium relative humidity (ERH) at constant temperature (sorption isotherms) of triticale is needed to develop improved storage methods. Therefore, the primary research objective was to measure the EMC for triticale seed at different ERH values at three different constant temperatures (5°C, 23°C, and 35°C) using six desiccation jars containing different saturated salt concentrations. The secondary objective was to determine the best fit equation describing these relati
... Show MoreIn this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional dispersion equation. The algorithm for the numerical solution of this equation is based on explicit finite difference approximation. Consistency, conditional stability, and convergence of this numerical method are described. Finally, numerical example is presented to show the dispersion behavior according to the order of the fractional derivative and we demonstrate that our explicit finite difference approximation is a computationally efficient method for solving two-dimensional fractional dispersion equation
Multipole mixing ratios for gamma transition populated in from reaction have been studied by least square fitting method also transition strength ] for pure gamma transitions have been calculated taking into account the mean life time for these levels .
The traditional shortest path problem is mainly concerned with identifying the associated paths in the transportation network that represent the shortest distance between the source and the destination in the transportation network by finding either cost or distance. As for the problem of research under study it is to find the shortest optimal path of multi-objective (cost, distance and time) at the same time has been clarified through the application of a proposed practical model of the problem of multi-objective shortest path to solve the problem of the most important 25 commercial US cities by travel in the car or plane. The proposed model was also solved using the lexicographic method through package program Win-QSB 2.0 for operation
... Show MoreThis article deals with the approximate algorithm for two dimensional multi-space fractional bioheat equations (M-SFBHE). The application of the collection method will be expanding for presenting a numerical technique for solving M-SFBHE based on “shifted Jacobi-Gauss-Labatto polynomials” (SJ-GL-Ps) in the matrix form. The Caputo formula has been utilized to approximate the fractional derivative and to demonstrate its usefulness and accuracy, the proposed methodology was applied in two examples. The numerical results revealed that the used approach is very effective and gives high accuracy and good convergence.
This paper is concerned with the solution of the nanoscale structures consisting of the with an effective mass envelope function theory, the electronic states of the quantum ring are studied. In calculations, the effects due to the different effective masses of electrons in and out the rings are included. The energy levels of the electron are calculated in the different shapes of rings, i.e., that the inner radius of rings sensitively change the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. The structures of quantum rings are studied by the one electronic band Hamiltonian effective mass approximati
... Show MoreCox regression model have been used to estimate proportion hazard model for patients with hepatitis disease recorded in Gastrointestinal and Hepatic diseases Hospital in Iraq for (2002 -2005). Data consists of (age, gender, survival time terminal stat). A Kaplan-Meier method has been applied to estimate survival function and hazerd function.
The designer must find the optimum match between the object's technical and economic needs and the performance and production requirements of the various material options when choosing material for an engineering application. This study proposes an integrated (hybrid) strategy for selecting the optimal material for an engineering design depending on design requirements. The primary objective is to determine the best candidate material for the drone wings based on Ashby's performance indices and then rank the result using a grey relational technique with the entropy weight method. Aluminum alloys, titanium alloys, composites, and wood have been suggested as suitable materials for manufacturing drone wings. The requirement
... Show MoreThe goal of this research is to solve several one-dimensional partial differential equations in linear and nonlinear forms using a powerful approximate analytical approach. Many of these equations are difficult to find the exact solutions due to their governing equations. Therefore, examining and analyzing efficient approximate analytical approaches to treat these problems are required. In this work, the homotopy analysis method (HAM) is proposed. We use convergence control parameters to optimize the approximate solution. This method relay on choosing with complete freedom an auxiliary function linear operator and initial guess to generate the series solution. Moreover, the method gives a convenient way to guarantee the converge
... Show MoreIn the last few years, fiber-coupled diode lasers have shown massive applications in many fields of communication and scientific research. Particularly, the pumping of solid-state lasers is a key application for more powerful diode lasers enabling good solutions in various laser micro methods like metal cutting, sintering, structuring as well as drilling. In this work, a simple beam shaping method is demonstrated for coupling a high-power semiconductor laser diode into multi-mode fiber optic using optical lenses. The optical lenses as beam transformation components are utilized to reshape the asymmetrical irradiation of the diode laser bar and to circularize the laser beam. Using this simple method, compact, high-output-power, and high-b
... Show More