Preferred Language
Articles
/
ijs-5483
Scene Text Recognition: A Review
...Show More Authors

      The problem of text recognition and its applicability as part of images captured in the wild has gained a significant attention from the computer vision community in recent years. In contrast to the recognition of printed documents, scene text recognition is a difficult problem. Contrary to recognition of printed documents, recognizing a scene text is a challenging problem. Many researches focus on the problem of recognizing text extracted from natural scene images. Significant attempts have been made to address this problem in recent past. However, many of these attempts work on utilizing availability of strong context, which naturally limits the dictionary. This paper presents a review of recent papers related to scene text recognition in the period (2013-2020). This paper helps other researchers to understand the whole system of scene text recognition instead of reading many papers in isolation.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Modern Applied Science
Hybrid Methodology for Image Segmentation Based on Active Contour Module and Alpha-Shape Theory
...Show More Authors

The concept of the active contour model has been extensively utilized in the segmentation and analysis of images. This technology has been effectively employed in identifying the contours in object recognition, computer graphics and vision, biomedical processing of images that is normal images or medical images such as Magnetic Resonance Images (MRI), X-rays, plus Ultrasound imaging. Three colleagues, Kass, Witkin and Terzopoulos developed this energy, lessening “Active Contour Models” (equally identified as Snake) back in 1987. Being curved in nature, snakes are characterized in an image field and are capable of being set in motion by external and internal forces within image data and the curve itself in that order. The present s

... Show More
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Automatic Segmentation and Identification of Abnormal Breast Region in Mammogram Images Based on Statistical Features
...Show More Authors

Breast cancer is one of the most common malignant diseases among women;
Mammography is at present one of the available method for early detection of
abnormalities which is related to breast cancer. There are different lesions that are
breast cancer characteristic such as masses and calcifications which can be detected
trough this technique. This paper proposes a computer aided diagnostic system for
the extraction of features like masses and calcifications lesions in mammograms for
early detection of breast cancer. The proposed technique is based on a two-step
procedure: (a) unsupervised segmentation method includes two stages performed
using the minimum distance (MD) criterion, (b) feature extraction based on Gray

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 02 2021
Journal Name
Iraqi Journal Of Science
Automated Methods to Segment Kidneys and Detect Tumors Using CT Images
...Show More Authors

Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors. In this paper, tried to implement an automated segmentation methods of gray level CT images is used to provide information such as anatomical structure and identifying the Region of Interest (ROI) i.e. locate tumor, lesion and other in kidney.
A CT image has inhomogeneity, noise which affects the continuity and accuracy of the images segmentation. In

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 26 2019
Journal Name
Iraqi Journal Of Science
Medical Image Enhancement to Extract Brain Tumors from CT and MRI images
...Show More Authors

     Always MRI and CT Medical images are noisy so that preprocessing is necessary for enhance these images to assist clinicians and make accurate diagnosis. Firstly, in the proposed method uses two denoising filters (Median and Slantlet) are applied to images in parallel and the best enhanced image gained from both filters is voted by use PSNR and MSE as image quality measurements. Next, extraction of brain tumor from cleaned images is done by segmentation method based on k-mean.  The result shows that the proposed method is giving an optimal solution due to denoising method which is based on multiple filter types to obtain best clear images and that is leads to make the extraction of tumor more precision best.<

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Influence of Cold Plasma on Sesame Paste and the Nano Sesame Paste Based on Co-occurrence Matrix
...Show More Authors

The aim of the research is to investigate the effect of cold plasma on the bacteria grown on texture of sesame paste in its normal particle and nano particle size. Starting by using the image segmentation process depending on the threshold method, it is used to get rid of the reflection of the glass slides on which the sesame samples are placed.  The classification process implemented to separate the sesame paste texture from normal and abnormal texture. The abnormal texture appears when the bacteria has been grown on the sesame paste after being left for two days in the air, unsupervised k-mean classification process used to classify the infected region, the normal region and the treated region. The bacteria treated with cold plasma, t

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation
...Show More Authors

Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Wed Dec 12 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Barriers to Baseline Needs for Early Detection of Breast Cancer among Iraqi Female Patients
...Show More Authors

Background: Breast Cancer is the most common malignancy among the Iraqi population; the majority of cases are still diagnosed at advanced stages with poor prospects of cure. Early detection through promoting public awareness is one of the promising tools in its control. Objectives: To evaluate the baseline needs for breast cancer awareness in Iraq through exploring level of knowledge, beliefs and behavior towards the disease and highlighting barriers to screening among a sample of Iraqi women complaining of breast cancer. Methodology: Two-hundred samples were enrolled in this study; gathered from the National

... Show More
View Publication Preview PDF
Publication Date
Tue May 16 2023
Journal Name
Journal Of Engineering
Experimental Investigation Utilizing Thermal Image Technique to the Heat Transfer Enhancement Using Oscillated Fins
...Show More Authors

Heat transfer around a flat plate fin integrated with piezoelectric actuator used as oscillated fin in laminar flow has been studied experimentally utilizing thermal image camera. This study is performed
for fixed and oscillated single and triple fins. Different substrate-fin models have been tested, using fins of (35mm and 50mm) height, two sets of triple fins of (3mm and 6mm) spacing and three frequencies
applied to piezoelectric actuator (5, 30 and 50HZ). All tests are carried out for (0.5 m/s and 3m/s) in subsonic open type wind tunnel to evaluate temperature distribution, local and average Nusselt number (Nu) along the fin. It is observed, that the heat transfer enhancement with oscillation is significant compared to without o

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
Enhancement of Wheat Leaf Images Using Fuzzy-Logic Based Histogram Equalization to Recognize Diseases
...Show More Authors

The detection of diseases affecting wheat is very important as it relates to the issue of food security, which poses a serious threat to human life. Recently, farmers have heavily relied on modern systems and techniques for the control of the vast agricultural areas. Computer vision and data processing play a key role in detecting diseases that affect plants, depending on the images of their leaves. In this article, Fuzzy- logic based Histogram Equalization (FHE) is proposed to enhance the contrast of images. The fuzzy histogram is applied to divide the histograms into two subparts of histograms, based on the average value of the original image, then equalize them freely and independently to conserve the brightness of the image. The prop

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Enhancement of Digital Stereo Vision Images based on Histogram and Gamma Correction Strategy
...Show More Authors

     Image contrast enhancement methods have been a topic of interest in digital image processing for various applications like satellite imaging, recognition, medical imaging, and stereo vision. This paper studies the technique for image enhancement utilizing Adaptive Histogram Equalization and Weighted Gamma Correction to cater radiometric condition and illumination variations of stereo image pairs. In the proposed method, the stereo pair images are segmented together with weighted distribution into sub-histograms supported with Histogram Equalization (HE) mapping or gamma correction and guided filtering.  The experimental result shows the experimented techniques outperform compare with the original image in ev

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref