Dropping packets with a linear function between two configured queue thresholds in Random Early Detection (RED) model is incapable of yielding satisfactory network performance. In this article, a new enhanced and effective active queue management algorithm, termed Double Function RED (DFRED in short) is developed to further curtail network delay. Specifically, DFRED algorithm amends the packet dropping probability approach of RED by dividing it into two sub-segments. The first and second partitions utilizes and implements a quadratic and linear increase respectively in the packet dropping probability computation to distinguish between two traffic loads: low and high. The ns-3 simulation performance evaluations clearly indicate that DFRED algorithm significantly controls the average queue occupancy and yields a reasonable gain in end-to-end-delay under different network conditions.
The Present investigation includes the isolation and identification of Pseudomonas aeruginosa for different cases of hospital contamination from 1/ 6/2003 to 30/9/2004, the identification of bacteria depended on morphological , cultural and biochemical characters, 37 of isolates were diagnosed from 70 smears from wounds and burns beside 25 isolates were identified from 200 smears taken from operation theater and hospital wards including the floors , walls , sources of light and operation equipment the sensitivity of all isolates to antibiotic were done , which exhibited complete sensitivity to Ciprofloxacin , Ceftraixon, Tobromycin and Gentamysin ,while they were complete resist to Amoxcillin , Tetracyclin , Nitrofurantion , Clindamycin C
... Show MoreDigital images are open to several manipulations and dropped cost of compact cameras and mobile phones due to the robust image editing tools. Image credibility is therefore become doubtful, particularly where photos have power, for instance, news reports and insurance claims in a criminal court. Images forensic methods therefore measure the integrity of image by apply different highly technical methods established in literatures. The present work deals with copy move forgery images of Media Integration and Communication Center Forgery (MICC-F2000) dataset for detecting and revealing the areas that have been tampered portion in the image, the image is sectioned into non overlapping blocks using Simple
... Show MoreAgriculture improvement is a national economic issue that extremely depends on productivity. The explanation of disease detection in plants plays a significant role in the agriculture field. Accurate prediction of the plant disease can help treat the leaf as early as possible, which controls the economic loss. This paper aims to use the Image processing techniques with Convolutional Neural Network (CNN). It is one of the deep learning techniques to classify and detect plant leaf diseases. A publicly available Plant village dataset was used, which consists of 15 classes, including 12 diseases classes and 3 healthy classes. The data augmentation techniques have been used. In addition to dropout and weight reg
... Show MoreSecure data communication across networks is always threatened with intrusion and abuse. Network Intrusion Detection System (IDS) is a valuable tool for in-depth defense of computer networks. Most research and applications in the field of intrusion detection systems was built based on analysing the several datasets that contain the attacks types using the classification of batch learning machine. The present study presents the intrusion detection system based on Data Stream Classification. Several data stream algorithms were applied on CICIDS2017 datasets which contain several new types of attacks. The results were evaluated to choose the best algorithm that satisfies high accuracy and low computation time.
Smishing is a cybercriminal attack targeting mobile Short Message Service (SMS) devices that contains a malicious link, phone number, or email. The attacker intends to use this message to steal the victim's sensitive information, such as passwords, bank account details, and credit cards. One method of combating smishing is to raise awareness and educate users about the various tactics used by SMS phishers. But even so, this method has been criticized for becoming inefficient because smishing tactics are continually evolving. A more promising anti-smishing method is to use machine learning. This paper introduces a number of machine learning algorithms that can be used for detecting smishing. Furthermore, the differences and simil
... Show MoreWith the growth of mobile phones, short message service (SMS) became an essential text communication service. However, the low cost and ease use of SMS led to an increase in SMS Spam. In this paper, the characteristics of SMS spam has studied and a set of features has introduced to get rid of SMS spam. In addition, the problem of SMS spam detection was addressed as a clustering analysis that requires a metaheuristic algorithm to find the clustering structures. Three differential evolution variants viz DE/rand/1, jDE/rand/1, jDE/best/1, are adopted for solving the SMS spam problem. Experimental results illustrate that the jDE/best/1 produces best results over other variants in terms of accuracy, false-positive rate and false-negative
... Show MorePlagiarism Detection Systems play an important role in revealing instances of a plagiarism act, especially in the educational sector with scientific documents and papers. The idea of plagiarism is that when any content is copied without permission or citation from the author. To detect such activities, it is necessary to have extensive information about plagiarism forms and classes. Thanks to the developed tools and methods it is possible to reveal many types of plagiarism. The development of the Information and Communication Technologies (ICT) and the availability of the online scientific documents lead to the ease of access to these documents. With the availability of many software text editors, plagiarism detections becomes a critical
... Show MoreIn this work, animal bones with different shapes and sizes were used to study the characteristics of the ground penetrating Radar system wares reflected by these bones. These bones were buried underground in different depths and surrounding media. The resulting data showed that the detection of buried bones with the GPR technology is highly dependent upon the surrounding media that the bones were buried in. Humidity is the main source of signal loss in such application because humidity results in low signal-to-noise ratio which leads to inability to distinguish between the signal reflected by bones from that reflected by the dopes in the media such as rock .