The traveling salesman problem is addressed in this paper by introducing a distributed multi-ant colony algorithm that is implemented on a Raspberry Pi cluster. The implementation of a master and eight workers, each running on Raspberry Pi nodes, is the central component of this novel technique. Each worker is responsible for managing their own colony of ants, while the master coordinates communications among workers’ nodes and assesses the most optimal approach. To put the newly built cluster through its paces, several datasets of traveling salesman problem are used to test the created cluster. The findings of the experiment indicate that a single board computer cluster, which makes use of multi-ant colony algorithm, is a viable alternative for distributed computing. This approach's extensibility options are extensively discussed as well.
In the field of construction project management, time and cost are the most important factors to be considered in planning every project, and their relationship is complex. The total cost for each project is the sum of the direct and indirect cost. Direct cost commonly represents labor, materials, equipment, etc.
Indirect cost generally represents overhead cost such as supervision, administration, consultants, and interests. Direct cost grows at an increasing rate as the project time is reduced from its original planned time. However, indirect cost continues for the life of the project and any reduction in project time means a reduction in indirect cost. Therefore, there is a trade-off between the time and cost for completing construc
This research introduces a proposed hybrid Spam Filtering System (SFS) which consists of Ant Colony System (ACS), information gain (IG) and Naïve Bayesian (NB). The aim of the proposed hybrid spam filtering is to classify the e-mails with high accuracy. The hybrid spam filtering consists of three consequence stages. In the first stage, the information gain (IG) for each attributes (i.e. weight for each feature) is computed. Then, the Ant Colony System algorithm selects the best features that the most intrinsic correlated attributes in classification. Finally, the third stage is dedicated to classify the e-mail using Naïve Bayesian (NB) algorithm. The experiment is conducted on spambase dataset. The result shows that the accuracy of NB
... Show MoreThe traveling salesman problem (TSP) is a well-known and important combinatorial optimization problem. The goal is to ï¬nd the shortest tour that visits each city in a given list exactly once and then returns to the starting city. In this paper we exploit the TSP to evaluate the minimum total cost (distance or time) for Iraqi cities. So two main methods are investigated to solve this problem; these methods are; Dynamic Programming (DP) and Branch and Bound Technique (BABT). For the BABT, more than one lower and upper bounds are be derived to gain the best one. The results of BABT are completely identical to DP, with less time for number of cities (n), 5 ≤ n ≤ 25. These results proof the efficiency of BABT compared with so
... Show MoreCrow Search Algorithm (CSA) can be defined as one of the new swarm intelligence algorithms that has been developed lately, simulating the behavior of a crow in a storage place and the retrieval of the additional food when required. In the theory of the optimization, a crow represents a searcher, the surrounding environment represents the search space, and the random storage of food location represents a feasible solution. Amongst all the food locations, the one where the maximum amount of the food is stored is considered as the global optimum solution, and objective function represents the food amount. Through the simulation of crows’ intelligent behavior, the CSA attempts to find the optimum solutions to a variety of the proble
... Show MoreThe aim of human lower limb rehabilitation robot is to regain the ability of motion and to strengthen the weak muscles. This paper proposes the design of a force-position control for a four Degree Of Freedom (4-DOF) lower limb wearable rehabilitation robot. This robot consists of a hip, knee and ankle joints to enable the patient for motion and turn in both directions. The joints are actuated by Pneumatic Muscles Actuators (PMAs). The PMAs have very great potential in medical applications because the similarity to biological muscles. Force-Position control incorporating a Takagi-Sugeno-Kang- three- Proportional-Derivative like Fuzzy Logic (TSK-3-PD) Controllers for position control and three-Proportional (3-P) controllers for force contr
... Show MoreEstablishing complete and reliable coverage for a long time-span is a crucial issue in densely surveillance wireless sensor networks (WSNs). Many scheduling algorithms have been proposed to model the problem as a maximum disjoint set covers (DSC) problem. The goal of DSC based algorithms is to schedule sensors into several disjoint subsets. One subset is assigned to be active, whereas, all remaining subsets are set to sleep. An extension to the maximum disjoint set covers problem has also been addressed in literature to allow for more advance sensors to adjust their sensing range. The problem, then, is extended to finding maximum number of overlapped set covers. Unlike all related works which concern with the disc sensing model, the cont
... Show MoreThis paper investigates the performance evaluation of two state feedback controllers, Pole Placement (PP) and Linear Quadratic Regulator (LQR). The two controllers are designed for a Mass-Spring-Damper (MSD) system found in numerous applications to stabilize the MSD system performance and minimize the position tracking error of the system output. The state space model of the MSD system is first developed. Then, two meta-heuristic optimizations, Simulated Annealing (SA) optimization and Ant Colony (AC) optimization are utilized to optimize feedback gains matrix K of the PP and the weighting matrices Q and R of the LQR to make the MSD system reach stabilization and reduce the oscillation of the response. The Matlab softwar
... Show MoreIn this paper, two of the local search algorithms are used (genetic algorithm and particle swarm optimization), in scheduling number of products (n jobs) on a single machine to minimize a multi-objective function which is denoted as (total completion time, total tardiness, total earliness and the total late work). A branch and bound (BAB) method is used for comparing the results for (n) jobs starting from (5-18). The results show that the two algorithms have found the optimal and near optimal solutions in an appropriate times.