Preferred Language
Articles
/
ijs-7617
Spam Filtering based on Naïve Bayesian with Information Gain and Ant Colony System
...Show More Authors

This research introduces a proposed hybrid Spam Filtering System (SFS) which consists of Ant Colony System (ACS), information gain (IG) and Naïve Bayesian (NB). The aim of the proposed hybrid spam filtering is to classify the e-mails with high accuracy. The hybrid spam filtering consists of three consequence stages. In the first stage, the information gain (IG) for each attributes (i.e. weight for each feature) is computed. Then, the Ant Colony System algorithm selects the best features that the most intrinsic correlated attributes in classification. Finally, the third stage is dedicated to classify the e-mail using Naïve Bayesian (NB) algorithm. The experiment is conducted on spambase dataset. The result shows that the accuracy of NB with IG-ACS is better than NB with IG only. 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jun 03 2023
Journal Name
Iraqi Journal Of Science
Fuzzy Based Spam Filtering
...Show More Authors

Emails have proliferated in our ever-increasing communication, collaboration and
information sharing. Unfortunately, one of the main abuses lacking complete benefits of
this service is email spam (or shortly spam). Spam can easily bewilder system because
of its availability and duplication, deceiving solicitations to obtain private information.
The research community has shown an increasing interest to set up, adapt, maintain and
tune several spam filtering techniques for dealing with emails and identifying spam and
exclude it automatically without the interference of the email user. The contribution of
this paper is twofold. Firstly, to present how spam filtering methodology can be
constructed based on the concep

... Show More
View Publication Preview PDF
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
An Integrated Information Gain with A Black Hole Algorithm for Feature Selection: A Case Study of E-mail Spam Filtering
...Show More Authors

     The current issues in spam email detection systems are directly related to spam email classification's low accuracy and feature selection's high dimensionality. However, in machine learning (ML), feature selection (FS) as a global optimization strategy reduces data redundancy and produces a collection of precise and acceptable outcomes. A black hole algorithm-based FS algorithm is suggested in this paper for reducing the dimensionality of features and improving the accuracy of spam email classification. Each star's features are represented in binary form, with the features being transformed to binary using a sigmoid function. The proposed Binary Black Hole Algorithm (BBH) searches the feature space for the best feature subsets,

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Jan 04 2022
Journal Name
Iraqi Journal Of Science
Spam Filtering Approach based on Weighted Version of Possibilistic c-Means
...Show More Authors

A principal problem of any internet user is the increasing number of spam, which became a great problem today. Therefore, spam filtering has become a research fo-cus that attracts the attention of several security researchers and practitioners. Spam filtering can be viewed as a two-class classification problem. To this end, this paper proposes a spam filtering approach based on Possibilistic c-Means (PCM) algorithm and weighted distance coined as (WFCM) that can efficiently distinguish between spam and legitimate email messages. The objective of the formulated fuzzy problem is to construct two fuzzy clusters: spam and email clusters. The weight assignment is set by information gain algorithm. Experimental results on spam based benchmark

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 14 2018
Journal Name
Journal Of Engineering
Optimum Design of Power System Stabilizer based on Improved Ant Colony Optimization Algorithm
...Show More Authors

This paper presents an improved technique on Ant Colony Optimization (ACO) algorithm. The procedure is applied on Single Machine with Infinite Bus (SMIB) system with power system stabilizer (PSS) at three different loading regimes. The simulations are made by using MATLAB software. The results show that by using Improved Ant Colony Optimization (IACO) the system will give better performance with less number of iterations as it compared with a previous modification on ACO. In addition, the probability of selecting the arc depends on the best ant performance and the evaporation rate.

 

View Publication Preview PDF
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Ant Colony Optimization Algorithm for Design of Distribution System with Practical Application
...Show More Authors

The Ant System Algorithm (ASA) is a member of the ant colony algorithms family in swarm intelligence methods (part of the Artificial Intelligence field), which is based on the behavior of ants seeking a path and a source of food in their colonies. The aim of This algorithm is to search for an optimal solution for Combinational Optimization Problems (COP) for which is extremely difficult to find solution using the classical methods like linear and non-linear programming methods. 

The Ant System Algorithm was used in the management of water resources field in Iraq, specifically for Haditha dam which is one of the most important dams in Iraq. The target is to find out an efficient management system for

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Nov 01 2021
Journal Name
Journal Of Engineering
Performance Evaluation of Pole Placement and Linear Quadratic Regulator Strategies Designed for Mass-Spring-Damper System Based on Simulated Annealing and Ant Colony Optimization
...Show More Authors

This paper investigates the performance evaluation of two state feedback controllers, Pole Placement (PP) and Linear Quadratic Regulator (LQR). The two controllers are designed for a Mass-Spring-Damper (MSD) system found in numerous applications to stabilize the MSD system performance and minimize the position tracking error of the system output. The state space model of the MSD system is first developed. Then, two meta-heuristic optimizations, Simulated Annealing (SA) optimization and Ant Colony (AC) optimization are utilized to optimize feedback gains matrix K of the PP and the weighting matrices Q and R of the LQR to make the MSD system reach stabilization and reduce the oscillation of the response. The Matlab softwar

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Ant Colony Optimization Based Force-Position Control for Human Lower Limb Rehabilitation Robot
...Show More Authors

The aim of human lower limb rehabilitation robot is to regain the ability of motion and to strengthen the weak muscles. This paper proposes the design of a force-position control for a four Degree Of Freedom (4-DOF) lower limb wearable rehabilitation robot. This robot consists of a hip, knee and ankle joints to enable the patient for motion and turn in both directions. The joints are actuated by Pneumatic Muscles Actuators (PMAs). The PMAs have very great potential in medical applications because the similarity to biological muscles. Force-Position control incorporating a Takagi-Sugeno-Kang- three- Proportional-Derivative like Fuzzy Logic (TSK-3-PD) Controllers for position control and three-Proportional (3-P) controllers for force contr

... Show More
View Publication Preview PDF
Publication Date
Mon May 01 2017
Journal Name
2017 5th International Conference On Information And Communication Technology (icoic7)
Analysis of the number of ants in ant colony system algorithm
...Show More Authors

View Publication
Scopus (24)
Crossref (11)
Scopus Crossref
Publication Date
Wed Apr 05 2023
Journal Name
Journal Of Engineering
Construction Time-Cost Optimization Modeling Using Ant Colony Optimization
...Show More Authors

In the field of construction project management, time and cost are the most important factors to be considered in planning every project, and their relationship is complex. The total cost for each project is the sum of the direct and indirect cost. Direct cost commonly represents labor, materials, equipment, etc.
Indirect cost generally represents overhead cost such as supervision, administration, consultants, and interests. Direct cost grows at an increasing rate as the project time is reduced from its original planned time. However, indirect cost continues for the life of the project and any reduction in project time means a reduction in indirect cost. Therefore, there is a trade-off between the time and cost for completing construc

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Apr 29 2018
Journal Name
Iraqi Journal Of Science
The Proposed Collaborative Filtering Recommender System Based on Implicit and Explicit User's Preferences
...Show More Authors

The expansion of web applications like e-commerce and other services yields an exponential increase in offers and choices in the web. From these needs, the recommender system applications have arisen. This research proposed a recommender system that uses user's reviews as implicit feedback to extract user preferences from their reviews to enhance personalization in addition to the explicit ratings. Diversity also improved by using k-furthest neighbor algorithm upon user's clusters. The system tested using Douban movie standard dataset from Kaggle, and show good performance. 

View Publication Preview PDF