Preferred Language
Articles
/
ijs-5386
Breast Cancer Detection using Decision Tree and K-Nearest Neighbour Classifiers
...Show More Authors

      Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the  most effective parameter, particularly when Age<49.5. Whereas  Ki67  appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimum error rate, and the test maximum accuracy for K_value selection with an accuracy of 86.24%. Where the distance metric has been assigned using the Euclidean approach. From previous models, it seems that Breast Cancer Grade2 is the most prevalent type. For the future perspective, a comparative study could be performed to compare the supervised and unsupervised data mining algorithms.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
K-Nearest Neighbor Method with Principal Component Analysis for Functional Nonparametric Regression
...Show More Authors

This paper proposed a new  method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates  are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It  utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA))  for measureing the closeness between curves.  Root Mean Square Errors is used for the  implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when  the cov

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jul 29 2019
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Comparison between Mammography and Breast Ultrasound in the Detection of Breast Cancer in Dense Breast Tissue among a Sample of Iraqi Women
...Show More Authors
Background: Breast cancer is the most common cancer reported in women worldwide . In Iraq, it is the  most common registered malignancy. Mammography plays a major role in  the early detection of breast cancers. Dense breast parenchyma has been reported to be the most important inherent factor that limits  depiction of breast cancer on mammogram, and often needs supplementary breast ultrasound for complete assessment. 
Objectives: To evaluate and compare the diagnostic performance of mammography and ultrasound in the
detection of breast cancer in dense breast tissue.
Patients
... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Dec 12 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Barriers to Baseline Needs for Early Detection of Breast Cancer among Iraqi Female Patients
...Show More Authors

Background: Breast Cancer is the most common malignancy among the Iraqi population; the majority of cases are still diagnosed at advanced stages with poor prospects of cure. Early detection through promoting public awareness is one of the promising tools in its control. Objectives: To evaluate the baseline needs for breast cancer awareness in Iraq through exploring level of knowledge, beliefs and behavior towards the disease and highlighting barriers to screening among a sample of Iraqi women complaining of breast cancer. Methodology: Two-hundred samples were enrolled in this study; gathered from the National

... Show More
View Publication Preview PDF
Publication Date
Tue May 01 2012
Journal Name
Iraqi Journal Of Physics
Early detection of breast cancer mass lesions by mammogram segmentation images based on texture features
...Show More Authors

Mammography is at present one of the available method for early detection of masses or abnormalities which is related to breast cancer. The most common abnormalities that may indicate breast cancer are masses and calcifications. The challenge lies in early and accurate detection to overcome the development of breast cancer that affects more and more women throughout the world. Breast cancer is diagnosed at advanced stages with the help of the digital mammogram images. Masses appear in a mammogram as fine, granular clusters, which are often difficult to identify in a raw mammogram. The incidence of breast cancer in women has increased significantly in recent years.
This paper proposes a computer aided diagnostic system for the extracti

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
A Modified Support Vector Machine Classifiers Using Stochastic Gradient Descent with Application to Leukemia Cancer Type Dataset
...Show More Authors

Support vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Detection of BRCA1and BRCA2 mutation for Breast Cancer in Sample of Iraqi Women above 40 Years
...Show More Authors

Breast cancer is the commonest cancer affecting women worldwide. Different studies have dealt with the etiological factors of that cancer aiming to find a way for early diagnosis and satisfactory therapy. The present study clarified the relationship between genetic polymorphisms of BRCA1 & BRCA2 genes and some etiological risk factors among breast cancer patients in Iraq. This investigation was carried out on 25 patients (all were females) who were diagnosed as breast cancer patients attended AL-Kadhemya Teaching Hospital in Baghdad and 10 apparently healthy women were used as a control, all women (patients and control) aged above 40 years. The Wizard Promega kit was used for DNA isolation from breast patients and normal individuals. B

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Oct 02 2016
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Evaluation of triple hormonal content (ER, PR, and HER\2neu)of breast cancer specimens obtained from breast cancer patients using tru-cut biopsy
...Show More Authors

Background: Breast cancer is the commonest type of malignancy among women worldwide and in Iraq. Tru-cut needle biopsy technique provides adequate tissue for histopathological diagnosis of suspected breast lumps and assessment of hormonal receptors (estrogen, progesterone and HER2neu) prior to surgical operation.
Objectives: To assess estrogen, progesterone andHER2neu expression using breast cancer tissue specimens obtained by tru-cut biopsy, to correlate the findings with clinicopathological parameters of known prognostic significance in breast cancer patients.
Patients and Methods: This prospective study was held within the Main Referral Center for Early Detection of Breast Tumors/Medical City Teachi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi National Journal Of Nursing Specialties
Impact of Psychological Distress in Women upon Coping with Breast Cancer: Coping with Breast Cancer
...Show More Authors

Objective(s): To determine the impact of psychological distress in women upon coping with breast cancer.

Methodology: A descriptive design is carried throughout the present study. Convenient sample of (60) woman with breast cancer is recruited from the community. Two instruments, psychological distress scale and coping scale are developed for the study. Internal consistency reliability and content validity are obtained for the study instruments. Data are collect through the application of the study instruments. Data are analyzed through the use of descriptive statistical data analysis approach and inferential statistical data analysis approach.

Results: The study findings depict that women with breast cancer have experien

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 12 2013
Journal Name
Pierb
RADAR SENSING FEATURING BICONICAL ANTENNA AND ENHANCED DELAY AND SUM ALGORITHM FOR EARLY-STAGE BREAST CANCER DETECTION
...Show More Authors

A biconical antenna has been developed for ultra-wideband sensing. A wide impedance bandwidth of around 115% at bandwidth 3.73-14 GHz is achieved which shows that the proposed antenna exhibits a fairly sensitive sensor for microwave medical imaging applications. The sensor and instrumentation is used together with an improved version of delay and sum image reconstruction algorithm on both fatty and glandular breast phantoms. The relatively new imaging set-up provides robust reconstruction of complex permittivity profiles especially in glandular phantoms, producing results that are well matched to the geometries and composition of the tissues. Respectively, the signal-to-clutter and the signal-to-mean ratios of the improved method are consis

... Show More
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Development of an Optimized Botnet Detection Framework based on Filters of Features and Machine Learning Classifiers using CICIDS2017 Dataset
...Show More Authors
Abstract<p>Botnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper <italic>suggests</italic> a hybrid detection Botnet model using machine learning approach, performed and analyzed to detect Botnet atta</p> ... Show More
View Publication
Scopus (13)
Crossref (9)
Scopus Crossref