Preferred Language
Articles
/
ijs-5386
Breast Cancer Detection using Decision Tree and K-Nearest Neighbour Classifiers
...Show More Authors

      Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the  most effective parameter, particularly when Age<49.5. Whereas  Ki67  appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimum error rate, and the test maximum accuracy for K_value selection with an accuracy of 86.24%. Where the distance metric has been assigned using the Euclidean approach. From previous models, it seems that Breast Cancer Grade2 is the most prevalent type. For the future perspective, a comparative study could be performed to compare the supervised and unsupervised data mining algorithms.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
Implementation of K-Nearest Neighbors Algorithm for Predicting Heart Disease Using Python Flask
...Show More Authors

     Heart disease is a non-communicable disease and the number 1 cause of death in Indonesia. According to WHO predictions, heart disease will cause 11 million deaths in 2020. Bad lifestyle and unhealthy consumption patterns of modern society are the causes of this disease experienced by many people. Lack of knowledge about heart conditions and the potential dangers cause heart disease attacks before any preventive measures are taken. This study aims to produce a system for Predicting Heart Disease, which benefits to prevent and reduce the number of deaths caused by heart disease. The use of technology in the health sector has been widely practiced in various places and one of the advanced technologies is machine lea

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (5)
Scopus Crossref
Publication Date
Sat Apr 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Intrusion detection method for internet of things based on the spiking neural network and decision tree method
...Show More Authors

The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices

... Show More
Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Intrusion detection method for internet of things based on the spiking neural network and decision tree method
...Show More Authors

The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices

... Show More
Scopus (12)
Crossref (5)
Scopus Crossref
Publication Date
Mon Jan 30 2023
Journal Name
Iraqi Journal Of Science
Texture Features of Grey Level Size Zone Matrix for Breast Cancer Detection
...Show More Authors

    The texture analysis of cancer cells leads to a procedure to distinguish spatial differences within an image and extract essential information. This study used two test tumours images to determine cancer type, location, and geometric characteristics (area, size, dimensions, radius, etc.). The suggested algorithm was designed to detect and distinguish breast cancer using the segmentation-based threshold technique. The method of texture analysis Grey Level Size Zone method was used to extract 11 features: Small Zone Emphasis, Large Zone Emphasis, Low Grey Level Zone Emphasis, High Grey Level Zone Emphasis, Small Zone Low Grey Level Emphasis, Small Zone High Grey Level Emphasis, Large Zone Low Grey Level Emphasis, Large Zone High Gre

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Mar 26 2017
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Detection of Serum Ferritin in Women with Breast Cancer
...Show More Authors

 

Breast cancer is one of the most common cancers in females. In Iraq there are noticeable elevation in incidence rates and prevalence of advanced stages of breast cancer. Ferritin is intracellular iron storage protein abundant in circulation and its main application in differential diagnosis of anemia.

The level of serum ferritin was found raised in various cancers including breast cancer. The aim of this study was to assess whether the serum ferritin concentration would be altered in Iraqi women with breast cancer and it could be related to progression of disease.

Sixty eight females participated in this study. The mean age of these females was 53.25± 9.52 .The level of serum ferritin was measured in 24

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Performance Evaluation of Intrusion Detection System using Selected Features and Machine Learning Classifiers
...Show More Authors

Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems.  Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic.  Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance.  In this study, two different sets of select

... Show More
View Publication Preview PDF
Scopus (17)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Mon Jul 01 2013
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Molecular detection of Epstein Barr Virus in Women with Breast cancer
...Show More Authors

Background: Epstein Barr Virus (EBV) infection has been implicated in pathogenesis of several types of carcinomas such as nasopharyngeal carcinoma, gastric cancer and bladder cancer and has recently been associated with breast cancer.
Objective: To evaluate the relations between Epstein Barr virus-encoded small RNA (EBER) and breast cancer.
Methods: Twenty two cases of breast cancer were retrieved from the Al-Kadhimiya Teaching Hospital in Baghdad. Clinical data were analyzed from the medical records and formalin fixed, paraffin embedded tumor tissue were examined by Chromogeneic in situ hybridization (ISH) technique for the detection of EBER.
Results: The expression of EBER in tissues patients with breast cancer in the present

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Apr 30 2024
Journal Name
Iraqi Journal Of Science
Detection of Anti-cancer Activity of Silver Nanoparticles Synthesized using Aqueous Mushroom Extract of Pleurotus ostreatus on MCF-7 Human Breast Cancer Cell Line
...Show More Authors

     In this research, silver nanoparticles (AgNPs) were manufactured using aqueous extract of mushroom Pleurotus ostreatus. Anticancer potential of AgNPs was investigated versus human breast cancer cell line (MCF-7). Cytotoxic response was assessed by MTT assay. AgNPs showed inhibition effect at the following concentrations 12.5, 25, 50, 100 and 200 µg/ml versus MCF-7 cell line, and all treatments had a positive result. The MCF-7 cells were inhibited up to 85.14 % at the concentration 200 μg/ml of AgNPs which reduced cells viability to 14.86%, while 12.5 μg/ml of AgNPs caused 24.23% cells inhibition with reduction of cells viability to 75.77%.

View Publication
Scopus Crossref
Publication Date
Tue Jan 18 2022
Journal Name
Iraqi Journal Of Science
Diagnosis the Breast Cancer using Bayesian Rough Set Classifier
...Show More Authors

Breast cancer was one of the most common reasons for death among the women in the world. Limited awareness of the seriousness of this disease, shortage number of specialists in hospitals and waiting the diagnostic for a long period time that might increase the probability of expansion the injury cases. Consequently, various machine learning techniques have been formulated to decrease the time taken of decision making for diagnoses the breast cancer and that might minimize the mortality rate. The proposed system consists of two phases. Firstly, data pre-processing (data cleaning, selection) of the data mining are used in the breast cancer dataset taken from the University of California, Irvine machine learning repository in this stage we

... Show More
View Publication Preview PDF
Publication Date
Sat May 08 2021
Journal Name
Iraqi Journal Of Science
EEG Signals Analysis for Epileptic Seizure Detection Using DWT Method with SVM and KNN Classifiers
...Show More Authors

Epilepsy is a critical neurological disorder with critical influences on the way of living of its victims and prominent features such as persistent convulsion periods followed by unconsciousness. Electroencephalogram (EEG) is one of the commonly used devices for seizure recognition and epilepsy detection. Recognition of convulsions using EEG waves takes a relatively long time because it is conducted physically by epileptologists. The EEG signals are analyzed and categorized, after being captured, into two types, which are normal or abnormal (indicating an epileptic seizure).  This study relies on EEG signals which are provided by Arrhythmia Database. Thus, this work is a step beyond the traditional database mission of delivering use

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref