In this research paper, we explain the use of the convexity and the starlikness properties of a given function to generate special properties of differential subordination and superordination functions in the classes of analytic functions that have the form in the unit disk. We also show the significant of these properties to derive sandwich results when the Srivastava- Attiya operator is used.
Researchers have identified and defined β- approach normed space if some conditions are satisfied. In this work, we show that every approach normed space is a normed space.However, the converse is not necessarily true by giving an example. In addition, we define β – normed Banach space, and some examples are given. We also solve some problems. We discuss a finite β-dimensional app-normed space is β-complete and consequent Banach app- space. We explain that every approach normed space is a metric space, but the converse is not true by giving an example. We define β-complete and give some examples and propositions. If we have two normed vector spaces, then we get two properties that are equivalent. We also explain that
... Show MoreIn this paper we present a new method for solving fully fuzzy multi-objective linear programming problems and find the fuzzy optimal solution of it. Numerical examples are provided to illustrate the method.
The aim of this paper is to introduce a certain family of new classes of multivalent functions associated with subordination. The various results obtained here for each of these classes include coefficient estimates radius of convexity, distortion and growth theorem.
In this paper, we introduce a new type of Drazin invertible operator on Hilbert spaces, which is called D-operator. Then, some properties of the class of D-operators are studied. We prove that the D-operator preserves the scalar product, the unitary equivalent property, the product and sum of two D-operators are not D-operator in general but the direct product and tenser product is also D-operator.
In this paper, we derive some subordination and superordination results for certain subclasses of p− valent analytic functions that defined by generalized Fox-wright functions using the principle of differential subordination, ----------producing best dominant univalent solutions. We have also derived inclusion relations and solved majorization problem.
In this paper, a new third kind Chebyshev wavelets operational matrix of derivative is presented, then the operational matrix of derivative is applied for solving optimal control problems using, third kind Chebyshev wavelets expansions. The proposed method consists of reducing the linear system of optimal control problem into a system of algebraic equations, by expanding the state variables, as a series in terms of third kind Chebyshev wavelets with unknown coefficients. Example to illustrate the effectiveness of the method has been presented.
Medical image segmentation is a frequent processing step in image medical understanding and computer aided diagnosis. In this paper, development of range operator in image segmentation is proposed depending on dermatology infection. Three different block sizes have been utilized on the range operator and the developed ones to enhance the behavior of the segmentation process of medical images. To exploit the concept of range filtering, the extraction of the texture content of medical image is proposed. Experiment is conducted on different medical images and textures to prove the efficacy of our proposed filter was good results.
This paper introduces a generalization sequence of positive and linear operators of integral type based on two parameters to improve the order of approximation. First, the simultaneous approximation is studied and a Voronovskaja-type asymptotic formula is introduced. Next, an error of the estimation in the simultaneous approximation is found. Finally, a numerical example to approximate a test function and its first derivative of this function is given for some values of the parameters.