This paper presents a hierarchical two-stage outdoor scene classification method using multi-classes of Support Vector Machine (SVM). In this proposed method, the gist feature of all the images in the database is extracted first to obtain the feature vectors. The image of database is classified into eight outdoor scenes classes, four manmade scenes and four natural scenes. Second, a hierarchical classification is applied, where the first stage classifies all manmade scene classes against all natural scene classes, while the second stage of a hierarchical classification classifies the outputs of first stage into either one of the four manmade scene classes or natural scene classes. Binary SVM and multi-classes SVMs are employed in the first and second stage of a hierarchical classification respectively. The proposed method is designed also to compare and find the most suitable multi-classes SVMs approach and the kernel function for classification task, where their performances are analyzed based on experimental results. The multi-classes SVMs used in this paper are One-versus-All (OvA) and One-versus-One (OvO), while the kernel functions used are linear kernel, Radius Basis Function (RBF) kernel and Polynomial kernel. Experimental results indicate that OvO classifier provides better performance than OvA classifier. The results, also show that the Polynomial kernel function is superior to others kernel function.
Knowledge of the mineralogical composition of a petroleum reservoir's formation is crucial for the petrophysical evaluation of the reservoir. The Mishrif formation, which is prevalent in the Middle East, is renowned for its mineralogical complexity. Multi-mineral inversion, which combines multiple logs and inversions for multiple minerals at once, can make it easier to figure out what minerals are in the Mishrif Formation. This method could help identify minerals better and give more information about the minerals that make up the formation. In this study, an error model is used to find a link between the measurements of the tools and the petrophysical parameters. An error minimization procedure is subsequently applied to determine
... Show MoreSupport vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa
... Show MoreLinear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.
In this paper we have been focus for the comparison between three forms for classification data belongs
... Show MoreObjective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.
Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are
... Show MoreEarthquakes occur on faults and create new faults. They also occur on normal, reverse and strike-slip faults. The aim of this work is to suggest a new unified classification of Shallow depth earthquakes based on the faulting styles, and to characterize each class. The characterization criteria include the maximum magnitude, focal depth, b-constant value, return period and relations between magnitude, focal depth and dip of fault plane. Global Centroid Moment Tensor (GCMT) catalog is the source of the used data. This catalog covers the period from Jan.1976 to Dec. 2017. We selected only the shallow (depth less than 70kms) pure, normal, strike-slip and reverse earthquakes (magnitude ≥ 5) and excluded the oblique earthquakes. Th
... Show MoreCrime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or livin
... Show MoreFractal geometry is receiving increase attention as a quantitative and qualitative model for natural phenomena description, which can establish an active classification technique when applied on satellite images. In this paper, a satellite image is used which was taken by Quick Bird that contains different visible classes. After pre-processing, this image passes through two stages: segmentation and classification. The segmentation carried out by hybrid two methods used to produce effective results; the two methods are Quadtree method that operated inside Horizontal-Vertical method. The hybrid method is segmented the image into two rectangular blocks, either horizontally or vertically depending on spectral uniformity crit
... Show MoreDuring the last few decades, many academic and professional groups gave attention to adopting the multi-criteria decision-making methods in a variety of contexts for decision-making that are given to the diversity and sophistication of their selections. Five different classification methods are tested and assessed in this paper. Each has its own set of five attribute selection approaches. By using the multi-criteria decision-making procedures, these data can be used to rate options. Technique for order of preference by similarity to ideal solution (TOPSIS) is designed utilizing a modified fuzzy analytic hierarchy process (MFAHP) to compute the weight alternatives for TOPSIS in order to obtain the confidence value of each class
... Show More