Preferred Language
Articles
/
ijs-535
Outdoor Scene Classification Using Multiple SVM

This paper presents a hierarchical two-stage outdoor scene classification method using multi-classes of Support Vector Machine (SVM). In this proposed method, the gist feature of all the images in the database is extracted first to obtain the feature vectors. The image of database is classified into eight outdoor scenes classes, four manmade scenes and four natural scenes. Second, a hierarchical classification is applied, where the first stage classifies all manmade scene classes against all natural scene classes, while the second stage of a hierarchical classification classifies the outputs of first stage into either one of the four manmade scene classes or natural scene classes. Binary SVM and multi-classes SVMs are employed in the first and second stage of a hierarchical classification respectively. The proposed method is designed also to compare and find the most suitable multi-classes SVMs approach and the kernel function for classification task, where their performances are analyzed based on experimental results. The multi-classes SVMs used in this paper are One-versus-All (OvA) and One-versus-One (OvO), while the kernel functions used are linear kernel, Radius Basis Function (RBF) kernel and Polynomial kernel. Experimental results indicate that OvO classifier provides better performance than OvA classifier. The results, also show that the Polynomial kernel function is superior to others kernel function.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 06 2021
Journal Name
Journal Of Planner And Development
Course Life Scene The street Urban

The study of an urban street scene of the life cycle is one of the important things in urban scene studies and there are four vocabularys that are the basis for the life cycle of an urban scene and these vocabulary are (the street, transformation, land uses and urban scene).

 

            the first vocabulary addressed in the research is the street where street classes were studied and its classifications in terms of morphology and function and study of street standards in cities.

 

            The second term, are transformations, where the concept of transformation and its patterns and

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 01 2023
Journal Name
City And Environment Interactions
Scopus (3)
Crossref (4)
Scopus Clarivate Crossref
View Publication
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Galaxy Morphological Image Classification using ResNet

     Machine learning-based techniques are used widely for the classification of images into various categories. The advancement of Convolutional Neural Network (CNN) affects the field of computer vision on a large scale. It has been applied to classify and localize objects in images. Among the fields of applications of CNN, it has been applied to understand huge unstructured astronomical data being collected every second. Galaxies have diverse and complex shapes and their morphology carries fundamental information about the whole universe. Studying these galaxies has been a tremendous task for the researchers around the world. Researchers have already applied some basic CNN models to predict the morphological classes

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Data Classification using Quantum Neural Network

In this paper, integrated quantum neural network (QNN), which is a class of feedforward

neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Multi – Linear in Multiple Nonparametric Regression , Detection and Treatment Using Simulation

             It is the regression analysis is the foundation stone of knowledge of statistics , which mostly depends on the ordinary least square method , but as is well known that the way the above mentioned her several conditions to operate accurately and the results can be unreliable , add to that the lack of certain conditions make it impossible to complete the work and analysis method and among those conditions are the multi-co linearity problem , and we are in the process of detected that problem between the independent variables using farrar –glauber test , in addition to the requirement linearity data and the lack of the condition last has been resorting to the

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More
Publication Date
Sat Jan 30 2021
Journal Name
Iraqi Journal Of Science
Intrusion Detection System Using Data Stream Classification

Secure data communication across networks is always threatened with intrusion and abuse. Network Intrusion Detection System (IDS) is a valuable tool for in-depth defense of computer networks. Most research and applications in the field of intrusion detection systems was built based on analysing the several datasets that contain the attacks types using the classification of batch learning machine. The present study presents the intrusion detection system based on Data Stream Classification. Several data stream algorithms were applied on CICIDS2017 datasets which contain several new types of attacks. The results were evaluated to choose the best algorithm that satisfies high accuracy and low computation time.

Scopus (3)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Middle-east Journal Of Scientific Research
Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Al-nahrain Journal Of Science
Image Classification Using Bag of Visual Words (BoVW)

In this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.

Crossref (19)
Crossref
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Face-based Gender Classification Using Deep Learning Model

Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea

... Show More
Crossref
View Publication Preview PDF