Glaucoma is one of the most dangerous eye diseases. It occurs as a result of an imbalance in the drainage and flow of the retinal fluid. Consequently, intraocular pressure is generated, which is a significant risk factor for glaucoma. Intraocular pressure causes progressive damage to the optic nerve head, thus leading to vision loss in the advanced stages. Glaucoma does not give any signs of disease in the early stages, so it is called "the Silent Thief of Sight". Therefore, early diagnosis and treatment of retinal eye disease is extremely important to prevent vision loss. Many articles aim to analyze fundus retinal images and diagnose glaucoma. This review can be used as a guideline to help diagnose glaucoma. It presents 63 articles related to the applications of fundus retinal analysis. Applications of the glaucomatous image classification are improving fundus images by locating and segmenting the optic disc, optic cup, fovea, and blood vessels. The study also presents datasets, metrics, and parameters that indicate the changes in retina structure and the steps and results for each paper.
Conventional dosage forms for topical and transdermal drug delivery have several disadvantages related mainly to its poor skin permeation and patient compliance. Many approaches have been developed to improve these dosage forms. Film forming drug delivery systems represents a recent advancement in this field. It provides improved patient compliance with enhanced skin permeation of drugs. In its simplest form, these consist of a polymeric solution, usually in a supersaturated state, in a suitable solvent. A plasticizer is usually added to improve the flexibility and enhance the tensile strength to the film. It is also possible to control and sustain the drug release from the films by controlling the polymeric content, concentration o
... Show MoreDeaf and dumb peoples are suffering difficulties most of the time in communicating with society. They use sign language to communicate with each other and with normal people. But Normal people find it more difficult to understand the sign language and gestures made by deaf and dumb people. Therefore, many techniques have been employed to tackle this problem by converting the sign language to a text or a voice and vice versa. In recent years, research has progressed steadily in regard to the use of computers to recognize and translate the sign language. This paper reviews significant projects in the field beginning with important steps of sign language translation. These projects can b
Optical Mark Recognition (OMR) is the technology of electronically extracting intended data from marked fields, such as squareand bubbles fields, on printed forms. OMR technology is particularly useful for applications in which large numbers of hand-filled forms need to be processed quickly and with a great degree of accuracy. The technique is particularly popular with schools and universities for the reading in of multiple choice exam papers. This paper proposed OMRbased on Modify Multi-Connect Architecture (MMCA) associative memory, its work in two phases: training phase and recognition phase. The proposed method was also able to detect more than one or no selected choice. Among 800 test samples with 8 types of grid answer sheets and tota
... Show MoreBackground and Aim: due to the rapid growth of data communication and multimedia system applications, security becomes a critical issue in the communication and storage of images. This study aims to improve encryption and decryption for various types of images by decreasing time consumption and strengthening security. Methodology: An algorithm is proposed for encrypting images based on the Carlisle Adams and Stafford Tavares CAST block cipher algorithm with 3D and 2D logistic maps. A chaotic function that increases the randomness in the encrypted data and images, thereby breaking the relation sequence through the encryption procedure, is introduced. The time is decreased by using three secure and private S-Boxes rather than using si
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreProtecting information sent through insecure internet channels is a significant challenge facing researchers. In this paper, we present a novel method for image data encryption that combines chaotic maps with linear feedback shift registers in two stages. In the first stage, the image is divided into two parts. Then, the locations of the pixels of each part are redistributed through the random numbers key, which is generated using linear feedback shift registers. The second stage includes segmenting the image into the three primary colors red, green, and blue (RGB); then, the data for each color is encrypted through one of three keys that are generated using three-dimensional chaotic maps. Many statistical tests (entropy, peak signa
... Show MoreBackground:
Steganography involves concealing information by embedding data within cover media and it can be categorized into two main domains: spatial and frequency. This paper presents two distinct methods. The first is operating in the spatial domain which utilizes the least significant bits (LSBs) to conceal a secret message. The second method is the functioning in the frequency domain which hides the secret message within the LSBs of the middle-frequency band of the discrete cosine transform (DCT) coefficients. These methods enhance obfuscation by utilizing two layers of randomness: random pixel embedding and random bit embedding within each pixel. Unlike other available methods that embed data in sequential order with a fixed amount.
... Show MoreImage retrieval is used in searching for images from images database. In this paper, content – based image retrieval (CBIR) using four feature extraction techniques has been achieved. The four techniques are colored histogram features technique, properties features technique, gray level co- occurrence matrix (GLCM) statistical features technique and hybrid technique. The features are extracted from the data base images and query (test) images in order to find the similarity measure. The similarity-based matching is very important in CBIR, so, three types of similarity measure are used, normalized Mahalanobis distance, Euclidean distance and Manhattan distance. A comparison between them has been implemented. From the results, it is conclud
... Show More Today, the use of iris recognition is expanding globally as the most accurate and reliable biometric feature in terms of uniqueness and robustness. The motivation for the reduction or compression of the large databases of iris images becomes an urgent requirement. In general, image compression is the process to remove the insignificant or redundant information from the image details, that implicitly makes efficient use of redundancy embedded within the image itself. In addition, it may exploit human vision or perception limitations to reduce the imperceptible information.
This paper deals with reducing the size of image, namely reducing the number of bits required in representing the