In recent years, predicting heart disease has become one of the most demanding tasks in medicine. In modern times, one person dies from heart disease every minute. Within the field of healthcare, data science is critical for analyzing large amounts of data. Because predicting heart disease is such a difficult task, it is necessary to automate the process in order to prevent the dangers connected with it and to assist health professionals in accurately and rapidly diagnosing heart disease. In this article, an efficient machine learning-based diagnosis system has been developed for the diagnosis of heart disease. The system is designed using machine learning classifiers such as Support Vector Machine (SVM), Nave Bayes (NB), and K-Nearest Neighbor (KNN). The proposed work depends on the UCI database from the University of California, Irvine for the diagnosis of heart diseases. This dataset is preprocessed before running the machine learning model to get better accuracy in the classification of heart diseases. Furthermore, a 5-fold cross-validation operator was employed to avoid identical values being selected throughout the model learning and testing phase. The experimental results show that the Naive Bayes algorithm has achieved the highest accuracy of 97% compared to other ML algorithms implemented.
Background:. Children with spina bifida occulta require early surgery to prevent neurological deficits. The treatment of patients with a congenitally tethered cord who present in adulthood remains controversial.
Objective: The aim of this study is to describe the outcome obtained in 61 adult patients with congenital TCS and no prior surgical treatment who underwent surgical untethering.
Methods: This prospective study was conducted on 61 adult patients who underwent surgical untethering for spina bifida occulta at four neurosurgical centers in Baghdad / Iraq between March 2000 and January 2018. Patients who had undergone prior myelomeningocele repair or tet
... Show MoreJuvenile idiopathic arthritis (JIA) represents a group of multifactorial autoinflammatory arthritis diseases. A dysregulated production of pro-inflammatory cytokines is proposed to have a role in the pathogenesis of the disease. Interleukin-18 (IL-18) is one of these pro-inflammatory cytokines. Therefore, this study aimed to define the role of IL-18 in the pathogenesis of JIA. Accordingly, the serum level of IL-18 was determined in 59 Iraqi JIA patients and 58 matched controls. The results revealed a significantly increased median of IL-18 in the patients as compared to the control. A similar increased level was observed in subgroups of patients characterized according to gender, seropositivity for C-reactive protein and rheumatoid facto
... Show MoreDiagnosis of cystic echinococcosis is complex and has to be confirmed by the combination of immunological tests and imaging techniques. In this study heat shock proteins were induced and their immunoreactivity was assessed by ELISA.
Sera were collected from 34 hydatid patients who were admitted to the Rizgary Teaching Hospital through October 2013 to July 2017, in addition to 29 healthy donors and 18 non-hydatid cases. For heat shock response, two batches of 25000 protoscoleces (Ps) were incubated separately at 42°C and 45 °C for 4 hours. Heat treated and normal Ps were disrupted and the extracts were divided into two parts. One part was directly used as source of antigens (PE, PE42 and PE45) and the other one was par
... Show MoreObjective: The descriptive study was used to evaluate nursing staff performance in cardiac care units at teaching
and non teaching hospitals in kirkuk city: A comparative study.
Methodology: A descriptive study was used to evaluate nursing staff performance in cardiac care units. The study
was conducted from December 29th
, 2013 up to the 27th of Apr. 2014. A non-probability (purposive) sample of
(44) nurses who work in cardiac care unit at Azady teaching Hospital and Kirkuk general Hospital was evaluated by
a questionnaire which consisted of two parts; the first part is concerned with the demographic characteristics of
the nurses and the second part concerned Observation check list for evaluation nursing staff Perfo
The study aimed to assess the frequency of invasive fungal infection in patients with respiratory diseases by conventional and molecular methods. This study included 117 Broncho alveolar lavage (BAL) samples were collected from patients with respiratory disease (79 male and 38 female) with ages ranged between (20-80) years, who attended Medicine Baghdad Teaching hospital and AL-Emamain AL-Khadhymian Medical City, during the period from September 2019 to April 2020. The results in PCR versus culture methods in this study showed that out of 117 samples of fungal infections 30(25.6 %) were detected by culture method, while the 24(20.5%) samples were detected by PCR technique, the most commonly diagnosed pathogenic fungi is Candida spp.
... Show MoreBackground: Diabetes mellitus is a major health issue that is one of the leading causes of cardiovascular disease. Recent studies have found a link between uncontrolled diabetes and cardiovascular disease, with dyslipidaemia predicting glycated-hemoglobin (HbA1c), which could be a major contributor to type 2 diabetes complications and etiology.
Objectives: The objective of present study was estimate lipid profiles among control and uncontrolled type 2 diabetic patients.
Subjects and Methods: Analytical case control based study, One hundred twenty participate were included in study, 70 patients with DM as case group refer to Abuagala Center and difference follow up diabetic center and 50 non diabetic subjects taken as
... Show MoreIn this study, the relationship between the bare soil temperature with respect to its salinity is presented, the bare soil feature is considered only by eliminating all other land features by classifying the site location by using the support vector machine algorithm, in the same time the salinity index that calculated from the spectral response from the satellite bands is calibrated using empirical salinity value calculated from field soil samples. A 2D probability density function is used to analyze the relationship between the temperature rising from the minimum temperature (from the sunrise time) due to the solar radiation duration tell the time of the satellite capturing the scene image and the calibrated salinity index is presented. T
... Show MoreThe rehabilitation of deteriorated pavements using Asphalt Concrete (AC) overlays consistently confronts the reflection cracking challenge, where inherent cracks and joints from an existing pavement layer are mirrored in the new overlay. To address this issue, the current study evaluates the effectiveness of Engineered Cementitious Composite (ECC) and geotextile fabric as mitigation strategies. ECC, characterized by its tensile ductility, fracture resistance, and high deformation capacity, was examined in interlayer thicknesses of 7, 12, and 17 mm. Additionally, the impact of geotextile fabric positioning at the base and at 1/3 depth of the AC specimen was explored. Utilizing the Overlay Testing Machine (OTM) for evaluations, the research d
... Show MoreDeep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing
... Show MoreThis article reviews a decade of research in transforming smartphones into smart measurement tools for science and engineering laboratories. High-precision sensors have been effectively utilized with specific mobile applications to measure physical parameters. Linear, rotational, and vibrational motions can be tracked and studied using built-in accelerometers, magnetometers, gyroscopes, proximity sensors, or ambient light sensors, depending on each experiment design. Water and sound waves were respectively captured for analysis by smartphone cameras and microphones. Various optics experiments were successfully demonstrated by replacing traditional lux meters with built-in ambient light sensors. These smartphone-based measurement
... Show More