In recent years, predicting heart disease has become one of the most demanding tasks in medicine. In modern times, one person dies from heart disease every minute. Within the field of healthcare, data science is critical for analyzing large amounts of data. Because predicting heart disease is such a difficult task, it is necessary to automate the process in order to prevent the dangers connected with it and to assist health professionals in accurately and rapidly diagnosing heart disease. In this article, an efficient machine learning-based diagnosis system has been developed for the diagnosis of heart disease. The system is designed using machine learning classifiers such as Support Vector Machine (SVM), Nave Bayes (NB), and K-Nearest Neighbor (KNN). The proposed work depends on the UCI database from the University of California, Irvine for the diagnosis of heart diseases. This dataset is preprocessed before running the machine learning model to get better accuracy in the classification of heart diseases. Furthermore, a 5-fold cross-validation operator was employed to avoid identical values being selected throughout the model learning and testing phase. The experimental results show that the Naive Bayes algorithm has achieved the highest accuracy of 97% compared to other ML algorithms implemented.
World statistics declare that aging has direct correlations with more and more health problems with comorbid conditions. As healthcare communities evolve with a massive amount of data at a faster pace, it is essential to predict, assist, and prevent diseases at the right time, especially for elders. Similarly, many researchers have discussed that elders suffer extensively due to chronic health conditions. This work was performed to review literature studies on prediction systems for various chronic illnesses of elderly people. Most of the reviewed papers proposed machine learning prediction models combined with, or without, other related intelligence techniques for chronic disease detection of elderly patie
... Show MoreIn education, exams are used to asses students’ acquired knowledge; however, the manual assessment of exams consumes a lot of teachers’ time and effort. In addition, educational institutions recently leaned toward distance education and e-learning due the Coronavirus pandemic. Thus, they needed to conduct exams electronically, which requires an automated assessment system. Although it is easy to develop an automated assessment system for objective questions. However, subjective questions require answers comprised of free text and are harder to automatically assess since grading them needs to semantically compare the students’ answers with the correct ones. In this paper, we present an automatic short answer grading metho
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
Geographic Information Systems (GIS) are obtaining a significant role in handling strategic applications in which data are organized as records of multiple layers in a database. Furthermore, GIS provide multi-functions like data collection, analysis, and presentation. Geographic information systems have assured their competence in diverse fields of study via handling various problems for numerous applications. However, handling a large volume of data in the GIS remains an important issue. The biggest obstacle is designing a spatial decision-making framework focused on GIS that manages a broad range of specific data to achieve the right performance. It is very useful to support decision-makers by providing GIS-based decision support syste
... Show MoreWhen images are customized to identify changes that have occurred using techniques such as spectral signature, which can be used to extract features, they can be of great value. In this paper, it was proposed to use the spectral signature to extract information from satellite images and then classify them into four categories. Here it is based on a set of data from the Kaggle satellite imagery website that represents different categories such as clouds, deserts, water, and green areas. After preprocessing these images, the data is transformed into a spectral signature using the Fast Fourier Transform (FFT) algorithm. Then the data of each image is reduced by selecting the top 20 features and transforming them from a two-dimensiona
... Show MoreIn spite of the high rate of morbidity and mortality heart failure (HF) is common, and none of the medications are now entirely available for HF treatment. In addition to many environmental influences and clinical diseases, genetic factors may also contribute to the progression and development of HF. In the current study, samples of blood were collected from 150 heart failure patients and 130 healthy controls. We evaluated the association of four single nucleotide polymorphisms (snps) of Toll-like receptors (TLR6 and TLR5) with (HF) susceptibility in the Iraqi population. In this work, (SNP) called Toll-like receptor 5 (rs5744168, rs2072493) and Toll-like receptor 6 (rs1039559, rs5743810) were employed. (PCR-RFLP) for snps
... Show MoreFractal geometry is receiving increase attention as a quantitative and qualitative model for natural phenomena description, which can establish an active classification technique when applied on satellite images. In this paper, a satellite image is used which was taken by Quick Bird that contains different visible classes. After pre-processing, this image passes through two stages: segmentation and classification. The segmentation carried out by hybrid two methods used to produce effective results; the two methods are Quadtree method that operated inside Horizontal-Vertical method. The hybrid method is segmented the image into two rectangular blocks, either horizontally or vertically depending on spectral uniformity crit
... Show MoreEarthquakes occur on faults and create new faults. They also occur on normal, reverse and strike-slip faults. The aim of this work is to suggest a new unified classification of Shallow depth earthquakes based on the faulting styles, and to characterize each class. The characterization criteria include the maximum magnitude, focal depth, b-constant value, return period and relations between magnitude, focal depth and dip of fault plane. Global Centroid Moment Tensor (GCMT) catalog is the source of the used data. This catalog covers the period from Jan.1976 to Dec. 2017. We selected only the shallow (depth less than 70kms) pure, normal, strike-slip and reverse earthquakes (magnitude ≥ 5) and excluded the oblique earthquakes. Th
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More