The oscillation property of the second order half linear dynamic equation was studied, some sufficient conditions were obtained to ensure the oscillation of all solutions of the equation. The results are supported by illustrative examples.
The purpose of this paper is to study the instability of the zero solution of some type of nonlinear delay differential equations of fourth order by using the Lyapunov-Krasovskii functional approach; we obtain some conditions of instability of solution of such equation.
The purpose of this paper is to study the instability of the zero solution of some type of nonlinear delay differential equations of fifth order with delay by using the Lyapunov-Krasovskii functional approach, we obtain some conditions of instability of solution of such equation.
The non static chain is always the problem of static analysis so that explained some of theoretical work, the properties of statistical regression analysis to lose when using strings in statistic and gives the slope of an imaginary relation under consideration. chain is not static can become static by adding variable time to the multivariate analysis the factors to remove the general trend as well as variable placebo seasons to remove the effect of seasonal .convert the data to form exponential or logarithmic , in addition to using the difference repeated d is said in this case it integrated class d. Where the research contained in the theoretical side in parts in the first part the research methodology ha
... Show MoreThe basic goal of this research is to utilize an analytical method which is called the Modified Iterative Method in order to gain an approximate analytic solution to the Sine-Gordon equation. The suggested method is the amalgamation of the iterative method and a well-known technique, namely the Adomian decomposition method. A method minimizes the computational size, averts round-off errors, transformation and linearization, or takes some restrictive assumptions. Several examples are chosen to show the importance and effectiveness of the proposed method. In addition, a modified iterative method gives faster and easier solutions than other methods. These solutions are accurate and in agreement with the series
... Show MoreIn this paper, we introduce the bi-normality set, denoted by , which is an extension of the normality set, denoted by for any operators in the Banach algebra . Furthermore, we show some interesting properties and remarkable results. Finally, we prove that it is not invariant via some transpose linear operators.
This research is concerned with the study of (the aesthetic of constructive relations in linear composition) with what distinguished Arabic calligraphy through the style and artistic method in its construction, and the specifications it carries that enabled it to pay attention to building formations to achieve in its total linear ranges aesthetic values and relationships. Through the research, the models and the exploratory study that he obtained, the researcher was able to raise the research problem in the first chapter according to the following question: What is the aesthetic of constructive relations in linear formation?
The importance of the research in achieving the aesthetics of the formations, which is a wide field according t
This paper presents a new numerical method for the solution of ordinary differential equations (ODE). The linear second-order equations considered herein are solved using operational matrices of Wang-Ball Polynomials. By the improvement of the operational matrix, the singularity of the ODE is removed, hence ensuring that a solution is obtained. In order to show the employability of the method, several problems were considered. The results indicate that the method is suitable to obtain accurate solutions.
Finding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over
... Show More