The oscillation property of the second order half linear dynamic equation was studied, some sufficient conditions were obtained to ensure the oscillation of all solutions of the equation. The results are supported by illustrative examples.
In this paper, the effect of wear in the fluid film journal bearings on the dynamic stability of rotor bearing system has been studied depending on the development of new analytical equations for motion, instability threshold speed and steady state harmonic response for rotor with offset disc supported by worn journal bearings. Finite element method had been used for modeling the rotor bearing system. The analytical model is verified by comparing its results with that obtained numerically for a rotor supported on the short bearings. The analytical and numerical results showed good agreement with about 8.5% percentage error in the value of critical speed and about 3.5% percentage error in the value of harmonic response. T
... Show MoreThe aim of this paper is to present method for solving ordinary differential equations of eighth order with two point boundary conditions. We propose two-point osculatory interpolation to construct polynomial solution.
Our research is related to the projective line over the finite field, in this paper, the main purpose is to classify the sets of size K on the projective line PG (1,31), where K = 3,…,7 the number of inequivalent K-set with stabilizer group by using the GAP Program is computed.
Nuclear structure of 29-34Mg isotopes toward neutron dripline have been investigated using shell model with Skyrme-Hartree–Fock calculations. In particular nuclear densities for proton, neutron, mass and charge densities with their corresponding rms radii, neutron skin thicknesses and inelastic electron scattering form factors are calculated for positive low-lying states. The deduced results are discussed for the transverse form factor and compared with the available experimental data. It has been confirmed that the combining shell model with Hartree-Fock mean field method with Skyrme interaction can accommodate very well the nuclear excitation properties and can reach a highly descriptive and predictive power when investiga
... Show MoreThis research deals with study and analyze the industrial buyer behavior and identified its objectives by determine the nature of selection the members of the purchases committees and determine the role of the purchases committees to provide requirements of the educational and scientific process and knowledge Impact of the factors ( environmental , organizational , social , and individual ) and positions of the purchase in the behavior of the members of the purchases committees and starts the importance of research in it helps university administrations in the correct choice for the members of the purchases committees and gives a picture of professional conduct professional who is supposed to b
... Show MoreThe Feedback Concept has been spread as an organized trend for scientific research since it has a significant importance for human behavior and how it has been directed and controlled by the individual, feedback has numerous definitions but the simplest definition is; feedback is the information received by the individual from the output of his behavior, In addition to the mutual relationship between the individual and the stimulation that provide him with the basic information by the biological control of his behavior, Since feedback cannot be accomplished without receiving information from the inner and outer environment, the biological and physiological information become the ma
... Show MoreWe consider some nonlinear partial differential equations in higher dimensions, the negative order of the Calogero-Bogoyavelnskii-Schiff (nCBS) equationin (2+1) dimensions, the combined of the Calogero-Bogoyavelnskii-Schiff equation and the negative order of the Calogero-Bogoyavelnskii-Schiff equation (CBS-nCBS) in (2+1) dimensions, and two models of the negative order Korteweg de Vries (nKdV) equations in (3+1) dimensions. We show that these equations can be reduced to the same class of ordinary differential equations via wave reduction variable. Solutions in terms of symmetrical Fibonacci and Lucas functions are presented by implementation of the modified Kudryashov method.
This work presents a five-period chaotic system called the Duffing system, in which the effect of changing the initial conditions and system parameters d, g and w, on the behavior of the chaotic system, is studied. This work provides a complete analysis of system properties such as time series, attractors, and Fast Fourier Transformation Spectrum (FFT). The system shows periodic behavior when the initial conditions xi and yi equal 0.8 and 0, respectively, then the system becomes quasi-chaotic when the initial conditions xi and yi equal 0 and 0, and when the system parameters d, g and w equal 0.02, 8 and 0.09. Finally, the system exhibits hyperchaotic behavior at the first two conditions, 0 and 0, and the bandwidth of the chaotic
... Show MoreIn this work, linear and nonlinear optical properties of two types of Iraqi heavy crude oil extracted from fields in southern Iraq were determined. The nonlinear optical properties were measured utilizing Z-scan technology with He-Ne laser at 632.8 nm. It was found that nonlinear refractive index (NLR) values for the Basra and Kut heavy crude oil samples are 6.34381×10-4 and 8.25108×10-4 cm2/mW, respectively, while those for the nonlinear absorption coefficient (NLA) are 2.68942×10-5 and 2.58874×10-5 , respectively. These results showed that the two samples with linear and nonlinear optical properties can be used in optics field applications as
... Show More