This paper investigated an Iraqi dataset from Korek Telecom Company as Call Detail Recorded (CDRs) for six months falling between Sep. 2020-Feb. 2021. This data covers 18 governorates, and it falls within the period of COVID-19. The Gravity algorithm was applied into two levels of abstraction in deriving the results as the macroscopic and mesoscopic levels respectively. The goal of this study was to reveal the strength and weakness of people migration in-between the Iraqi cities. Thus, it has been clear that the relationship between each city with the others is based on and of mobile people. However, the COVID-19 effects on the people’s migration needed to be explored. Whereas the main function of the gravity model is to clarify the migration flows through modeling spatial interaction. This was implemented using Python scripting language. It is concluded that the gravity model has a powerful ability to analyze the movement of people between cities. According to the mean of result between governorates, showing that the highest attraction was between Babil and Anbar governorates amounted to , while the lowest attraction was between Wasit and Thi-Qar governorates with , and the others ranged between .
Fuzzy C-means (FCM) is a clustering method used for collecting similar data elements within the group according to specific measurements. Tabu is a heuristic algorithm. In this paper, Probabilistic Tabu Search for FCM implemented to find a global clustering based on the minimum value of the Fuzzy objective function. The experiments designed for different networks, and cluster’s number the results show the best performance based on the comparison that is done between the values of the objective function in the case of using standard FCM and Tabu-FCM, for the average of ten runs.
The place in which the person lives and his geographical and social environment have a great impact on building his personality, belief and culture, Islam has alerted the importance of the Muslim to make sure to choose the appropriate place in which he resides and dwells in that it is compatible with his religion and belief in order to ensure communication with Islamic knowledge in a way that enhances his belief Arabization occurs when a person makes himself an Arab by living the life of the Bedouins, and creates the morals of the Bedouins from the inhabitants of the Badia with its harshness, cruelty, ignorance and lack of understanding in religion and far from the sources of knowledge of Islamic knowledge. Blasphemy and polytheism, and
... Show MoreThe quality of groundwater is just as important as its quantity. The kinds and concentration of salts in groundwater depend on the environment, movement, and the source of the groundwater. During the field work, 20 samples have been collected from water wells from Al-Salman basin for two seasons represent wet and dry seasons in November 2017 and April 2018. After water well samples have been analyzed the Electrical conductivity values range from (2260 to 5500) μS/cm for dry season and range from (2540 to 5630) μS/cm for wet season, the Total dissolved solids values range from (1289 to 3582) ppm for dry season and range from (1710 to 3960) ppm for wet season, and pH values range from (7.11 to 7.3) for dry and wet seasons. The Hydroc
... Show MoreThis research deals with the study of top soil electrical conductive regions located within Baghdad City. The research included measuring the dissolved soil material extraction Electrical Conductivity (EC) with an aqueous solution for the top (0-30 cm) soil layer of the study area. As the electrical conductivity values increase by increasing the amount of dissolved salts in principle, we can consider that the aim of this research is to predict the amount and distribution of (soil contamination with salts) which is represented by the (Salt Index), this factor calculated for each soil representative sample taken from the region with a depth of (30 cm). Laboratory (EC) test values measured by the use of solutions (EC) digital meter for the ex
... Show MoreDiscriminant between groups is one of the common procedures because of its ability to analyze many practical phenomena, and there are several methods can be used for this purpose, such as linear and quadratic discriminant functions. recently, neural networks is used as a tool to distinguish between groups.
In this paper the simulation is used to compare neural networks and classical method for classify observations to group that is belong to, in case of some variables that don’t follow the normal distribution. we use the proportion of number of misclassification observations to the all observations as a criterion of comparison.
This paper presents a proposed neural network algorithm to solve the shortest path problem (SPP) for communication routing. The solution extends the traditional recurrent Hopfield architecture introducing the optimal routing for any request by choosing single and multi link path node-to-node traffic to minimize the loss. This suggested neural network algorithm implemented by using 20-nodes network example. The result shows that a clear convergence can be achieved by 95% valid convergence (about 361 optimal routes from 380-pairs). Additionally computation performance is also mentioned at the expense of slightly worse results.
This research includes the use of an artificial intelligence algorithm, which is one of the algorithms of biological systems which is the algorithm of genetic regulatory networks (GRNs), which is a dynamic system for a group of variables representing space within time. To construct this biological system, we use (ODEs) and to analyze the stationarity of the model we use Euler's method. And through the factors that affect the process of gene expression in terms of inhibition and activation of the transcription process on DNA, we will use TF transcription factors. The current research aims to use the latest methods of the artificial intelligence algorithm. To apply Gene Regulation Networks (GRNs), we used a progr
... Show MoreThis paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).