Storing, transferring, and processing high-dimensional electroencephalogram (EGG) signals is a critical challenge. The goal of EEG compression is to remove redundant data in EEG signals. Medical signals like EEG must be of high quality for medical diagnosis. This paper uses a compression system with near-zero Mean Squared Error (MSE) based on Discrete Cosine Transform (DCT) and double shift coding for fast and efficient EEG data compression. This paper investigates and compares the use or non-use of delta modulation, which is applied to the transformed and quantized input signal. Double shift coding is applied after mapping the output to positive as a final step. The system performance is tested using EEG data files from the CHB-MIT Scalp EEG Database. Compression Ratio (CR) is used to evaluate the compression system performance. The results are encouraging when compared with previous works on the same data samples.
The research problem has crystallized and in light of these capabilities, the level of performance depends on the application of modern training methods based on actual experimentation, and those methods aim to develop the components of achievement in this competition, including the quantities of exerting the distinctive strength with speed for the arms and feet, which reflects on good skillful performance because the skill of shooting by jumping forward and high forms A major role in achieving goals during the competition that qualifies the team to win, and through the follow-up of the researcher in the field and academic field, I noticed that there is a weakness in some physical abilities, which affects performance and skill level
... Show MoreAbstract: Microfluidic devices present unique advantages for the development of efficient drug assay and screening. The microfluidic platforms might offer a more rapid and cost-effective alternative. Fluids are confined in devices that have a significant dimension on the micrometer scale. Due to this extreme confinement, the volumes used for drug assays are tiny (milliliters to femtoliters).
In this research, a microfluidic chip consists of micro-channels carved on substrate materials built by using Acrylic (Polymethyl Methacrylate, PMMA) chip was designed using a Carbon Dioxide (CO2) laser machine. The CO2 parameters have influence on the width, depth, roughness of the chip. In order to have regular
... Show MoreA mathematical model constructed to study the combined effects of the concentration and the thermodiffusion on the nanoparticles of a Jeffrey fluid with a magnetic field effect the process of containing waves in a three-dimensional rectangular porous medium canal. Using the HPM to solve the nonlinear and coupled partial differential equations. Numerical results were obtained for temperature distribution, nanoparticles concentration, velocity, pressure rise, pressure gradient, friction force and stream function. Through the graphs, it was found that the velocity of fluid rises with the increase of a mean rate of volume flow and a magnetic parameter, while the velocity goes down with the increasing a Darcy number and lateral walls. Also, t
... Show MoreThe present work aims to study the treatment of oily wastewater by means of forward osmosis membrane bioreactor process. Side stream (external) configuration and submerged (internal) configuration of osmotic membrane bioreactor were performed and investigated. The experimental work for each configuration was carried out continuously over 21 days. The flux behavior of forward osmosis membrane in an osmotic membrane bioreactor (OMBR) was investigated, using NaCl as the draw solution and CTA as FO membrane. The effect of mixed liquor suspended solids (MLSS) concentration and TDS accumulation of bioreactor on water flux and membrane fouling behaviors was detected. The accumulation and rejection of nutrients in the bioreactor (Nitrate, COD,
... Show MoreResearchers employ behavior based malware detection models that depend on API tracking and analyzing features to identify suspected PE applications. Those malware behavior models become more efficient than the signature based malware detection systems for detecting unknown malwares. This is because a simple polymorphic or metamorphic malware can defeat signature based detection systems easily. The growing number of computer malwares and the detection of malware have been the concern for security researchers for a large period of time. The use of logic formulae to model the malware behaviors is one of the most encouraging recent developments in malware research, which provides alternatives to classic virus detection methods. To address the l
... Show MoreThe necessities of steganography methods for hiding secret message into images have been ascend. Thereby, this study is to generate a practical steganography procedure to hide text into image. This operation allows the user to provide the system with both text and cover image, and to find a resulting image that comprises the hidden text inside. The suggested technique is to hide a text inside the header formats of a digital image. Least Significant Bit (LSB) method to hide the message or text, in order to keep the features and characteristics of the original image are used. A new method is applied via using the whole image (header formats) to hide the image. From the experimental results, suggested technique that gives a higher embe
... Show MoreThe Internet of Things (IoT) is a network of devices used for interconnection and data transfer. There is a dramatic increase in IoT attacks due to the lack of security mechanisms. The security mechanisms can be enhanced through the analysis and classification of these attacks. The multi-class classification of IoT botnet attacks (IBA) applied here uses a high-dimensional data set. The high-dimensional data set is a challenge in the classification process due to the requirements of a high number of computational resources. Dimensionality reduction (DR) discards irrelevant information while retaining the imperative bits from this high-dimensional data set. The DR technique proposed here is a classifier-based fe
... Show MoreIn this paper, new brain tumour detection method is discovered whereby the normal slices are disassembled from the abnormal ones. Three main phases are deployed including the extraction of the cerebral tissue, the detection of abnormal block and the mechanism of fine-tuning and finally the detection of abnormal slice according to the detected abnormal blocks. Through experimental tests, progress made by the suggested means is assessed and verified. As a result, in terms of qualitative assessment, it is found that the performance of proposed method is satisfactory and may contribute to the development of reliable MRI brain tumour diagnosis and treatments.