The industrial factory is one of the challenging environments for future wireless communication systems, where the goal is to produce products with low cost in short time. This high level of network performance is achieved by distributing massive MIMO that provides indoor networks with joint beamforming that enhances 5G network capacity and user experience as well. Judging from the importance of this topic, this study introduces a new optimization problem concerning the investigation of multi-beam antenna (MBA) coverage possibilities in 5G network for indoor environments, named Base-station Beams Distribution Problem (BBDP). This problem has an extensive number of parameters and constrains including user’s location, required data rate and number of antenna elements. Thus, BBDP can be considered as NP-hard problem, where complexity increases exponentially as its dimension increases. Therefore, it requires a special computing method that can handle it in a reasonable amount of time. In this study, several differential evolution (DE) variants have been suggested to solve the BBDP problem. The results show that among all DE variants the self-adaptive DE (jDE) can find feasible solutions and outperform the classical ones in all BBDP scenarios with coverage rate of 85% and beam diameter of 500 m.
In this paper a refractive index sensor based on micro-structured optical fiber has been proposed using Finite Element Method (FEM). The designed fiber has a hexagonal cladding structure with six air holes rings running around its solid core. The air holes of fiber has been infiltrated with different liquids such as water , ethanol, methanol, and toluene then sensor characteristics like ; effective refractive index , confinement loss, beam profile of the fundamental mode, and sensor resolution are investigated by employing the FEM. This designed sensor characterized by its low confinement loss and high resolution so a small change in the analyte refractive index could be detect which is could be useful to detect the change of
... Show MoreCarbon monoxide (CO) plays an important indirect greenhouse gases due to its influences on the budgets of hydroxyl radicals (OH) and Ozone (O3). The atmospheric carbon monoxide (CO) observations can only be made on global and continental scales by remote sensing instruments situated in space. One of instrument is the Measurements of Pollution in the Troposphere (MOPITT), which is designed to measure troposphere CO and CH4 by use of a nadir-viewing geometry and was launched aboard the Earth Observing System (EOS) Terra spacecraft on 18 December 1999. Results from the analysis of the retrieved monthly (1ºх1º) spatial grid resolution, from the MOPITT data were utilized to analyze the distribution of CO surface mixing ratio in Iraq for th
... Show MoreSeveral previous investigations and studies utilized silica fume (SF) or (micro silica) particles as supplementary cementitious material added as a substitute to cement-based mortars and their effect on the overall properties, especially on physical properties, strength properties, and mechanical properties. This study investigated the impact of the inclusion of silica fume (SF) particles on the residual compressive strengths and microstructure properties of cement-based mortars exposed to severe conditions of elevated temperatures. The prepared specimens were tested and subjected to 25, 250, 450, 600, and 900 °C. Their residual compressive strengths and microstructure were evaluated and compared with control samples (C
... Show MoreIn modern times face recognition is one of the vital sides for computer vision. This is due to many reasons involving availability and accessibility of technologies and commercial applications. Face recognition in a brief statement is robotically recognizing a person from an image or video frame. In this paper, an efficient face recognition algorithm is proposed based on the benefit of wavelet decomposition to extract the most important and distractive features for the face and Eigen face method to classify faces according to the minimum distance with feature vectors. Faces94 data base is used to test the method. An excellent recognition with minimum computation time is obtained with accuracy reaches to 100% and recognition time decrease
... Show MoreSocial media and news agencies are major sources for tracking news and events. With these sources' massive amounts of data, it is easy to spread false or misleading information. Given the great dangers of fake news to societies, previous studies have given great attention to detecting it and limiting its impact. As such, this work aims to use modern deep learning techniques to detect Arabic fake news. In the proposed system, the attention model is adapted with bidirectional long-short-term memory (Bi-LSTM) to identify the most informative words in the sentence. Then, a multi-layer perceptron (MLP) is applied to classify news articles as fake or real. The experiments are conducted on a newly launched Arabic dataset called the Ara
... Show MoreThis paper describes a practical study on the impact of learning's partners, Bluetooth Broadcasting system, interactive board, Real – time response system, notepad, free internet access, computer based examination, and interaction classroom, etc, had on undergraduate student performance, achievement and involving with lectures. The goal of this study is to test the hypothesis that the use of such learning techniques, tools, and strategies to improve student learning especially among the poorest performing students. Also, it gives some kind of practical comparison between the traditional way and interactive way of learning in terms of lectures time, number of tests, types of tests, student's scores, and student's involving with lectures
... Show MoreIn this paper a new method is proposed to perform the N-Radon orthogonal frequency division multiplexing (OFDM), which are equivalent to 4-quadrature amplitude modulation (QAM), 16-QAM, 64-QAM, 256-QAM, ... etc. in spectral efficiency. This non conventional method is proposed in order to reduce the constellation energy and increase spectral efficiency. The proposed method gives a significant improvement in Bit Error Rate performance, and keeps bandwidth efficiency and spectrum shape as good as conventional Fast Fourier Transform based OFDM. The new structure was tested and compared with conventional OFDM for Additive White Gaussian Noise, flat, and multi-path selective fading channels. Simulation tests were generated for different channels
... Show MoreThe present study aims to identify wisdom-based thinking and its relationship to psychological capital. It further aims to find out the differences in the level of wisdom-based thinking and psychological capital according to the variables of gender and specialization (scientific, humanities). To achieve this, the study has been conducted on a sample of (380) male and female students. The two scales, wisdom-based thinking and psychological capital are implemented to the sample after being constructed by the researcher and after ensuring their psychometric characteristics' suitability for the study's aims. Results concerning the first aim have shown that there is a significant relationship among students. The second aim has revealed that t
... Show MoreThe detection of diseases affecting wheat is very important as it relates to the issue of food security, which poses a serious threat to human life. Recently, farmers have heavily relied on modern systems and techniques for the control of the vast agricultural areas. Computer vision and data processing play a key role in detecting diseases that affect plants, depending on the images of their leaves. In this article, Fuzzy- logic based Histogram Equalization (FHE) is proposed to enhance the contrast of images. The fuzzy histogram is applied to divide the histograms into two subparts of histograms, based on the average value of the original image, then equalize them freely and independently to conserve the brightness of the image. The prop
... Show MoreA new, Simple, sensitive and accurate spectrophotometric methods have been developed for the determination of sulfamethoxazole (SMZ) drug in pure and dosage forms. This method based on the reaction of sulfamethoxazole (SMZ) with 1,2-napthoquinone-4-sulphonic acid (NQS) to form Nalkylamono naphthoquinone by replacement of the sulphonate group of the naphthoquinone sulphonic acid by an amino group. The colored chromogen shows absorption maximum at 460 nm. The optimum conditions of condensation reaction forms were investigated by (1) univariable method, by optimizing the effect of experimental variables (different bases, reagent concentration, borax concentration and reaction time), (2) central composite design (CCD) including the effect of
... Show More