Preferred Language
Articles
/
ijs-5058
Study of the Impact of Unsteady Squeezing Magnetohydrodynamics Copper-Water with Injection-Suction on Nanofluid Flow Between Two Parallel Plates in Porous Medium
...Show More Authors

      In this article,  the existence of thermal radiation with Copper- water nanofluid, the effect of heat transfer in  unsteady magnetohydrodynamics (MHD) squeezing and suction-injection on the flow between parallel plates( porous medium) are studied. Rosseland approximation and   the radiation of  heat flux are used to depict the energy equation. The set of ordinary differential equations  with  boundary conditions are analytically resolved by applying a new approach method (NAM). The influences of thermal field and physical parameters on dimensionless flow field  have been displayed in tabular and graphs form. The presented results show that the heat transfer coefficient is reduced by the thermal radiation coefficient increases and  the absolute values of the skin friction coefficients are enhanced with the magnetic amplification parameter. Regularly, the present outcomes discern that the parameters of the injection-suction coefficient are both the  temperature and velocity profiles decline.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
New Bis(dithiocarbamate) Ligand for Complex Formation; Synthesis, Spectral Analysis and Bacterial Activity
...Show More Authors

A range of macrocyclic dinuclear metal (II) dithiocarbamate-based complexes are reported. The preparation of complexes was accomplished from either mixing of the prepared ligand with a metal ion or through a template one-pot reaction. The preparation of the bisamine precursor was achieved through several synthetic steps. The free ligand; potassium 2,2'-(biphenyl-4,4'-diylbis(azanediyl))bis(1-chloro-2-oxoethane-2,1diyl)bis(cyclohexylcarbamodithioate) (L) was yielded from the addition of CS2 to a bis-amine precursor in  KOH medium.A variety of analytical and physical methods were implemented to characterise ligand and its complexes. The analyses were based on spectroscopic techniques (FTIR, UV-Vis, mass spectroscopy and 1H, 13C-NMR sp

... Show More
View Publication Preview PDF
Crossref