In this article, the existence of thermal radiation with Copper- water nanofluid, the effect of heat transfer in unsteady magnetohydrodynamics (MHD) squeezing and suction-injection on the flow between parallel plates( porous medium) are studied. Rosseland approximation and the radiation of heat flux are used to depict the energy equation. The set of ordinary differential equations with boundary conditions are analytically resolved by applying a new approach method (NAM). The influences of thermal field and physical parameters on dimensionless flow field have been displayed in tabular and graphs form. The presented results show that the heat transfer coefficient is reduced by the thermal radiation coefficient increases and the absolute values of the skin friction coefficients are enhanced with the magnetic amplification parameter. Regularly, the present outcomes discern that the parameters of the injection-suction coefficient are both the temperature and velocity profiles decline.
This paper deals with a mathematical model of a fluid flowing between two parallel plates in a porous medium under the influence of electromagnetic forces (EMF). The continuity, momentum, and energy equations were utilized to describe the flow. These equations were stated in their nondimensional forms and then processed numerically using the method of lines. Dimensionless velocity and temperature profiles were also investigated due to the impacts of assumed parameters in the relevant problem. Moreover, we investigated the effects of Reynolds number , Hartmann number M, magnetic Reynolds number , Prandtl number , Brinkman number , and Bouger number , beside those of new physical quantities (N , ). We solved this system b
... Show More"This paper presents a study of inclined magnetic field on the unsteady rotating flow of a generalized Maxwell fluid with fractional derivative between two inclined infinite circular cylinders through a porous medium. The analytic solutions for velocity field and shear stress are derived by using the Laplace transform and finite Hankel transform in terms of the generalized G functions. The effect of the physical parameters of the problem on the velocity field is discussed and illustrated graphically.
The aim of this paper is to analyzed unsteady heat transfer for magnetohydrodynamic (MHD) flow of a second grade fluid in a channel with porous medium. The equations which was used to describe the flow are the momentum and energy, these equations were written to get thier non dimentional form. Homotopy analysis method (HAM) is employed to obtain a semi-analytical solutions for velocity and heat transfer fields. The effect of each dimensionless parameter upon the velocity and temperature distributions is analyzed and shown graphically by using MATHEMATICA package.
This article deals with the influence of porous media on helical flows of generalizedOldroyd-B between two infinite coaxial circular cylinders.The fractional derivative is modeled for this problem and studied by using finite Hankel and Laplace transforms.The velocity fields are found by using the fundamentals of the series form in terms of Mittag-Lefflerequation.The research focused on permeability parameters , fractional parameters(
In this article the unsteady magnetohydrodynamics oscillating flow of third order fluid with free stream velocity is proposed. It is found that the motion equation is controlled by five dimensionless parameters namely the coecostic parameter 4, viscoelostic parameter ?,acceleration/deceleration c,suction/blowing d and material constants ? . The effect of each of these parameters upon the velocity distribution is analysised
In this present paper , a special model was built to govern the equations of two dimensional peristaltic transport to nanofluid flow of a heat source in a tapered considered in an asymmetric channel. The equations of dimensionless temperature concentration are analytical solve under assumption slow Reynolds number and long wave length. Furthermore, the results that receive by expressing the maximum pressure rise communicates increased in case of non-Newtonian fluid when equated with Newtonian fluid. Finally, MATHEMATICA 11 program has been used to solve such system after obtaining the initial conditions. Most of the results of drawing for many are obtained via above program .
In this article the peristaltic transport of viscoelastic fluid through irregular microchannel under the effect of Hall current, varying viscosity and porous medium is investigated. The mathematical expressions for the basic flow equations of motion are formulated and transformed into a system of ordinary differential equations by utilizing appropriate non dimensional quantities. The exact solution for the temperature distribution is obtained, while perturbation series solution for the stream function in terms of tiny viscosity parameter is used. Graphical illustrations are presented to capture the physical impact of embedded parameters in the fluid flow i.e. the fluid velocity field, temperature distribution, pressure rise, and
... Show MoreThe purpose behind this paper is to discuss nanoparticles effect, porous media, radiation and heat source/sink parameter on hyperbolic tangent nanofluid of peristaltic flow in a channel type that is asymmetric. Under a long wavelength and the approaches of low Reynolds number, the governing nanofluid equations are first formulated and then simplified. Associated nonlinear differential equations will be obtained after making these approximations. Then the concentration of nanoparticle exact solution, temperature distribution, stream function, and pressure gradient will be calculated. Eventually, the obtained results will be illustrated graphically via MATHEMATICA software.
The aim of this paper is the study of the influence magnetic field on steady state
flows and heat transfer in microchannels between two parallel plates.
It is found that the motion equations are controlled by many dimensionless
parameter, namely magnetic field parameter M Reynolds number Re, physical
quantity at wall W and Knudsen number Kn also found that the energy equations
are controlled by many dimensionless parameter, namely magnetic field parameter
M Reynolds number Re, physical quantity at wall W and Knudsen number Kn ,
Prinkman number Br and Peclet number Pe.
The equations which controlled this type of fluid flow are complicated, so finding
an analytical solution is not easy.
We obtained the velocit