Establishing coverage of the target sensing field and extending the network’s lifetime, together known as Coverage-lifetime is the key issue in wireless sensor networks (WSNs). Recent studies realize the important role of nature-inspired algorithms in handling coverage-lifetime problem with different optimization aspects. One of the main formulations is to define coverage-lifetime problem as a disjoint set covers problem. In this paper, we propose an evolutionary algorithm for solving coverage-lifetime problem as a disjoint set covers function. The main interest in this paper is to reflect both models of sensing: Boolean and probabilistic. Moreover, a heuristic operator is proposed as a local refinement operator to improve the quality of the solutions provided by the evolutionary algorithm. Simulation results show the necessity to inject a heuristic operator within the mechanism of evolutionary algorithm to improve its performance. Additionally, the results show performance difference while adopting the two types of sensing models.
Simulation of the Linguistic Fuzzy Trust Model (LFTM) over oscillating Wireless Sensor Networks (WSNs) where the goodness of the servers belonging to them could change along the time is presented in this paper, and the comparison between the outcomes achieved with LFTM model over oscillating WSNs with the outcomes obtained by applying the model over static WSNs where the servers maintaining always the same goodness, in terms of the selection percentage of trustworthy servers (the accuracy of the model) and the average path length are also presented here. Also in this paper the comparison between the LFTM and the Bio-inspired Trust and Reputation Model for Wireless Sensor Network
... Show MoreA network (or formally a graph) can be described by a set of nodes and a set of edges connecting these nodes. Networks model many real-world phenomena in various research domains, such as biology, engineering and sociology. Community mining is discovering the groups in a network where individuals group of membership are not explicitly given. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem that recently enjoyed a considerable interest. Among the proposed methods, the field of evolutionary algorithms (EAs) takes a remarkable interest. To this end, the aim of this paper is to present the general statement of community detection problem in social networks. Then, it visits the problem as an optim
... Show MoreLocalization is an essential demand in wireless sensor networks (WSNs). It relies on several types of measurements. This paper focuses on positioning in 3-D space using time-of-arrival- (TOA-) based distance measurements between the target node and a number of anchor nodes. Central localization is assumed and either RF, acoustic or UWB signals are used for distance measurements. This problem is treated by using iterative gradient descent (GD), and an iterative GD-based algorithm for localization of moving sensors in a WSN has been proposed. To localize a node in 3-D space, at least four anchors are needed. In this work, however, five anchors are used to get better accuracy. In GD localization of a moving sensor, the algo
... Show MoreNowad ays, with the development of internet communication that provides many facilities to the user leads in turn to growing unauthorized access. As a result, intrusion detection system (IDS) becomes necessary to provide a high level of security for huge amount of information transferred in the network to protect them from threats. One of the main challenges for IDS is the high dimensionality of the feature space and how the relevant features to distinguish the normal network traffic from attack network are selected. In this paper, multi-objective evolutionary algorithm with decomposition (MOEA/D) and MOEA/D with the injection of a proposed local search operator are adopted to solve the Multi-objective optimization (MOO) followed by Naï
... Show More