Yamama Formation is the most important and widespread Lower Cretaceous Formation in Iraq. Yamama Formation in the Luhais well-12 and Rifaee well-1 are composed of dolomitized in some places and foraminifera and algae bearing limestone, 19 genera and species of foraminifera, 10 genera and species of algae. Two biozones were distinguished Pseudochrysalidina arabica Range zone and Pseudocyclammina lituus Range zone. The age of the formation was determined as Berriasian – Valanginian according to these biozones of Foraminifera. In this study, bryozoa, Gastropoda and Pelecypoda are recorded but less than Foraminifera.
Well log analysis of selected sections in southern Iraq revealed that primary porosity is the most effective parameters. Secondary porosity seems to be related mainly to dissolution and dolomatization. The Hartha Formation has good water saturation and low production except in the eastern and central part of the study area. Two reservoir units were recognized in Mj-2 whereas only one in Ga-1.
The values of velocity deviation in most wells show high positive deviation, this may indicate relatively high velocity in regard to porosity where pores are commonly not connected such as in interaparticle or moldic porosity. A positive deviation also may indicate low permeability. Negative deviation zone (Only in Ak-1) may represent caving or i
The purpose of this study is to elucidate the microfacies and the biozones present in the studied rocks as well as to determine their environments or deposition. The study depends mainly on the benthonic foraminiferal assemblages identified from (27) rock thin sections made available from an outcrop at Wadi Banat Al-Hassan area in the Upper Euphrates Valley. X-Ray diffraction was also used to determine the type of carbonate minerals present in the studied rocks.
The litholog of Nahr Umr Formation was evaluated using the Acoustic Impedance (AI), Vp/Vs ratio cross plot colored by petrophysical properties (Vsh, PHIT, PHIE, and Sw) in Am-6-Am-10 wells. Bulk density is an important physical property that reflects matrix density and fluid density that exist in rocks pores. It is used as the main parameters to estimate physical characteristics (porosity, water saturation, shale volume, and others). AI was calculated using RHOB and VP logs. Shear velocity was calculated using Greenberg Castagna equations used for estimating the Vp/Vs ratio and the result Showed that the Nahr Umr Formation is composed of two main lithological units. The upper unit (depth 3540m -3672m) is composed of limestone (li
... Show More3D geological model of a simple petroleum reservoir for Yamama Formation has
been built in Abu Amood Oil Field using Petrel software, which is a product of
Schlumberger. This model contains the structure, stratigraphy and reservoir
properties (porosity and water saturation) in three directions(X, Y and Z).Geologic
modeling is an applied science of creating computerized representations of portions
of the earth's crust, especially oil and gas fields.
Yamama Formation in Abu Amood Oil Field is divided into thirteen zones by
using well logs and their petrophysical properties, six of which are reservoir zones.
From the top of the formation these six zones are: (YB-1, YB-2, YB-3, YC-1, YC-2
and YC-3). These reservoir
The Mishrif and Yamama Formation are the main reservoirs in the Garraf oilfield, Nasiriyah city, of the Euphrates Subzone, Mesopotamian Basin, Southern Iraq. The Garraf oilfield structural pattern corresponds with the similar anticline forming the oilfields of Rafidain and Dujaila and is parallel to the main trend of Zagros, indicating simple coaxial deformation.
The petrophysical properties are evaluated using the Interactive Petrophysics V3.5 software. This comprises determining the lithology, mineralogy, and matrix for the investigated reservoirs, as estimating clay volume, total, effective, and secondary porosity, water saturation, permeability, and determining the net pay and gross thickness.
The findings of t
... Show MoreThe Middle Cenomanian-Early Turonian Mishrif Formation includes important carbonate reservoirs in Iraq and some other surrounding countries due to their high reservoir quality and wide geological extension. The 2D models of this study for facies, effective porosity and water saturation indicate the vertical and lateral heterogeneity of the Mishrif Formation reservoir properties in the Majnoon oil field. Construction of 2D reservoir model of the Mishrif Formation to explain the distribution of facies and petrophysical properties (effective porosity and water saturation) by using RockWorks software. The increase of effective porosity is attributed to the presence of shoal facies.The high water saturation is attributed to the existence of rest
... Show MoreThe reservoir units of Mishrif Formation in Majnoon oil field were studied by using available wireline logs (gamma ray, porosity and resistivity) and facies that derived from core and cutting samples for three wells including Mj-1, Mj-15, and Mj-20. The reservoir properties were determined and interpreted by using IP software. The results showed that unit D have the best reservoir properties due to high effective porosity, low water saturation and very low volume of shale. Furthermore, a large part of this unit was deposited in shoal environment. The other reservoir units are then graded in reservoir properties including units B, A, F & E respectively, except unit C, which is considered as a cap unit, because it consists of rest
... Show MoreThe reservoir units of Mishrif Formation in Majnoon oil field were studied by using available wireline logs (gamma ray, porosity and resistivity) and facies that derived from core and cutting samples for three wells including Mj-1, Mj-15, and Mj-20. The reservoir properties were determined and interpreted by using IP software. The results showed that unit D have the best reservoir properties due to high effective porosity, low water saturation and very low volume of shale. Furthermore, a large part of this unit was deposited in shoal environment. The other reservoir units are then graded in reservoir properties including units B, A, F & E respectively, except unit C, which is considered as a cap unit, because it consists of restricte
... Show More