In this paper we have made different regular graphs by using block designs. In one of our applicable methods, first we have changed symmetric block designs into new block designs by using a method called a union method. Then we have made various regular graphs from each of them. For symmetric block designs with (which is named finite projective geometry), this method leads to infinite class of regular graphs. With some examples we will show that these graphs can be strongly regular or semi-strongly regular. We have also propounded this conjecture that if two semi-symmetric block designs are non-isomorphic, then the resultant block graphs of them are non-isomorphic, too.
F index is a connected graph, sum of the cubes of the vertex degrees. The forgotten topological index has been designed to be employed in the examination of drug molecular structures, which is extremely useful for pharmaceutical and medical experts in understanding the biological activities. Among all the topological indices, the forgotten index is based on degree connectivity on bonds. This paper characterized the forgotten index of union of graphs, join graphs, limits on trees and its complements, and accuracy is measured. Co-index values are analyzed for the various molecular structure of chemical compounds
Antimagic labeling of a graph with vertices and edges is assigned the labels for its edges by some integers from the set , such that no two edges received the same label, and the weights of vertices of a graph are pairwise distinct. Where the vertex-weights of a vertex under this labeling is the sum of labels of all edges incident to this vertex, in this paper, we deal with the problem of finding vertex antimagic edge labeling for some special families of graphs called strong face graphs. We prove that vertex antimagic, edge labeling for strong face ladder graph , strong face wheel graph , strong face fan graph , strong face prism graph and finally strong face friendship graph .
The Detour distance is one of the most common distance types used in chemistry and computer networks today. Therefore, in this paper, the detour polynomials and detour indices of vertices identified of n-graphs which are connected to themselves and separated from each other with respect to the vertices for n≥3 will be obtained. Also, polynomials detour and detour indices will be found for another graphs which have important applications in Chemistry.
This paper is devoted to the discussion the relationships of connectedness between some types of graphs (resp. digraph) and Gm-closure spaces by using graph closure operators.
The local resolving neighborhood of a pair of vertices for and is if there is a vertex in a connected graph where the distance from to is not equal to the distance from to , or defined by . A local resolving function of is a real valued function such that for and . The local fractional metric dimension of graph denoted by , defined by In this research, the author discusses about the local fractional metric dimension of comb product are two graphs, namely graph and graph , where graph is a connected graphs and graph is a complate graph &
... Show MoreLet be a connected graph with vertices set and edges set . The ordinary distance between any two vertices of is a mapping from into a nonnegative integer number such that is the length of a shortest path. The maximum distance between two subsets and of is the maximum distance between any two vertices and such that belong to and belong to . In this paper, we take a special case of maximum distance when consists of one vertex and consists of vertices, . This distance is defined by: where is the order of a graph .
In this paper, we defined – polynomials based on
... Show MoreLet be a non-trivial simple graph. A dominating set in a graph is a set of vertices such that every vertex not in the set is adjacent to at least one vertex in the set. A subset is a minimum neighborhood dominating set if is a dominating set and if for every holds. The minimum cardinality of the minimum neighborhood dominating set of a graph is called as minimum neighborhood dominating number and it is denoted by . A minimum neighborhood dominating set is a dominating set where the intersection of the neighborhoods of all vertices in the set is as small as possible, (i.e., ). The minimum neighborhood dominating number, denoted by , is the minimum cardinality of a minimum neighborhood dominating set. In other words, it is the
... Show MoreThe metric dimension and dominating set are the concept of graph theory that can be developed in terms of the concept and its application in graph operations. One of some concepts in graph theory that combine these two concepts is resolving dominating number. In this paper, the definition of resolving dominating number is presented again as the term dominant metric dimension. The aims of this paper are to find the dominant metric dimension of some special graphs and corona product graphs of the connected graphs and , for some special graphs . The dominant metric dimension of is denoted by and the dominant metric dimension of corona product graph G and H is denoted by .