Bio-treatment is considered as one of ecologically most efficient methods of wastewater treatment. This study was done in order to reduce the negative effects phenolic compounds included in the olive mill wastewater added to the cultivated soil and to study the individual and collective ability of fungal and bacterial isolates to dismantle them. The experiment, conducted in 2020 with randomization in experimental design, consisted of six treatments and three replications. First four treatments had olive mill wastewater treated with fungal isolates Penicillium sp, Aspergillus flavos and bacterial isolates Pseudomonas sp,Bacillus sp individually. The fifth treatment included collective use of both isolates, in addition to the control which was without any treatment. The results of the statistical analysis showed that the phenolic compounds amount remained in the treated water which indicated the superiority of Penicillium sp over all treatments, where the apparent superiority of phenolic compounds dismantling was over bacterial isolates. However it was significantly over the collective effects of fungal and bacterial isolates, Aspergillus flavos and the control.
Bioethanol is an attractive fuel with higher potential for energy security and environmental safety. Olive solid residues were used as a raw material for the production of bioethanol through the use of different preliminary treatments . Separate treatments with cellulose, hydrochloric acid (HCl 5%), sulfuric acid (H2SO4 2%), and liquid ammonia NH4OH (20%) were used to convert cellulose and hemicellulose into monosaccharaides. The production of ethanol was observed during the fermentation process using R. minuta under anaerobic conditions. After 3 days of fermentation, lowest concentrations of ethanol of 0.233, 0.249, 0.261, and 0.275 g/ l were produced from ol
... Show MoreThe present study was designed to isolate the microbial community from oil-contaminated sites and other non-oil-contaminated sites which served as control samples in Kerbala city. In addition to test the effect of hydrocarbons on the growth of some types of bacteria. Bacterial genera and species were identified based on their growth on nutrient agar and blood agar as well as biochemical tests. According to the high bacterial growth rate on crude oil, 5 bacterial isolates were selected for further study. Growth of some identified bacteria in Minimal salt medium amended with hydrocarbon as the sole carbon source was investigated. Acinetobacter sp., Pseudomonas aeruginosa, Pseudomonas fluorescens, P
... Show MoreAdsorption experiments were carried out using two different low-cost sorbent materials, date seeds and olive seeds. These sorbents used as a single phase (not as mixture) to remove cadmium ions from simulated wastewater by adsorption process. The equilibrium time was found at 2 hr. The experiments include different parameters such sorbent type and weight and contact time. It was found that both of olive seed and date seed have approximately the same adsorption capacity (qm) with 15.644 mg/g and 15.2112 mg/g, respectively. Equilibrium isotherms and kinetic studies have been carried out. Langmuir isotherm model better fits the experimental data compared with the Freundlich isotherm for olive seed, while Freundlich isotherm fits for date se
... Show MoreIt is well known that petroleum refineries are considered the largest generator of oily sludge which may cause serious threats to the environment if disposed of without treatment. Throughout the present research, it can be said that a hybrid process including ultrasonic treatment coupled with froth floatation has been shown as a green efficient treatment of oily sludge waste from the bottom of crude oil tanks in Al-Daura refinery and able to get high yield of base oil recovery which is 65% at the optimum operating conditions (treatment time = 30 min, ultrasonic wave amplitude = 60 micron, and (solvent: oily sludge) ratio = 4). Experimental results showed that 83% of the solvent used was recovered meanwhile the main water
... Show MoreIn this research, annealed nanostructured ZnO catalyst water putrefaction system was built using sun light and different wavelength lasers as stimulating light sources to enhance photocatalytic degradation activity of methylene blue (MB) dye as a model based on interfacial charges transfer. The structural, crystallite size, morphological, particle size, optical properties and degradation ability of annealed nanostructured ZnO were characterized by X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and UV-VIS Spectrometer, respectively. XRD results demonstrated a pure crystalline hexagonal wurtzite with crystalline size equal to 23 nm. From AFM results, the average particle size was 79.25nm. All MB samples and MB with annealed nanostr
... Show MoreThe use of bio-fruit waste has more attention in recent years because of the low cost of bio-fibers and the protection of the environment. In this study, the epoxy was reinforced with fruit residues (cantaloupe peel powder) in proportions (1%, 2%, 3%, 4%, 5%, 7.5%, and 10% by weight) as results of mechanical tests such as impact, hardness, flexural and compression.
Adding sub microns particle size cantaloupe peels particles with a weight ratio of 7.5% improves the epoxy mechanical properties, like impact strength, hardness, flexural strength, and compression strength by 59.43%, 5.8%, 45.7%, and 118.2%, respectively.
Using X-ray diffraction, the crystallite size ( D) of cantaloupe peel the powder was about (3 nm).
In
... Show MoreMagnesium hydroxide was used as flame inhibitor to increased flame resistance for tires .Magnesium hydroxide was adding with (5%,10%) weight percents to rubber master batch of tire and then exposed the resulting material to a flame generated from gas torch with (10 mm) exposure distance . Method of measuring the surface temperature opposite to the flame was used to determine the heat transferred through tire material. The results were obtained shows enhanced flame resistance for tire by added magnesium hydroxide and this resistance increased by increasing hydroxide Percentage .
Background: Elastomeric chains are used to generate force in many orthodontic procedures, but this force decays over time, which could affect tooth movement. This study aimed to study the force degradation of elastomeric chains. Data and Sources: An electronic search on Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, LILACS, and PubMed was made, only articles written in English were included, up to January 2022.Study selection: Fifty original articles, systematic reviews, and RCTs were selected. Conclusion: Tooth movement, salivary enzymes, alcohol-containing mouthwash, whitening mouthwash, and alkaline and strong acidic (pH <5.4) solutions all have a significant impact on elastomeric chain force degradation. T
... Show MoreSoil-structure frictional resistance is an important parameter in the design of many foundation systems. The soil-structure interface area is responsible for load transferring from the structure to the surrounding soil. The mobilized shaft resistance of axially loaded, long slender pile embedded in dense, dry sand is experimentally and numerically analyzed when subjected to pullout force. Experimental setup including an instrumented model pile while the finite element method is used as a numerical analysis tool. The hypoplasticity model is used to model the soil adjacent to and surrounding the pile by using ABAQUS FEA (6.17.1). The soil-structure interface behavior depends on many factors, but mainly on the interface soi
... Show More