Bioethanol is an attractive fuel with higher potential for energy security and environmental safety. Olive solid residues were used as a raw material for the production of bioethanol through the use of different preliminary treatments . Separate treatments with cellulose, hydrochloric acid (HCl 5%), sulfuric acid (H2SO4 2%), and liquid ammonia NH4OH (20%) were used to convert cellulose and hemicellulose into monosaccharaides. The production of ethanol was observed during the fermentation process using R. minuta under anaerobic conditions. After 3 days of fermentation, lowest concentrations of ethanol of 0.233, 0.249, 0.261, and 0.275 g/ l were produced from olive waste powder sample as a result of separate pretreatment with cellulase, hydrochloric acid (HCl 5%), sulfuric acid (H2SO4 2%), and liquid ammonia NH4OH (20%), respectively, whereas the untreated sample showed ethanol yield of 0.264 g/ l.. The highest ethanol concentrations for the same samples were 0.510, 0.564, 0.737, and 0.696 g/ l, respectively, whereas that for the untreated samples was 0.445 g/ l. The highest concentration of ethanol produced (0.737 g/ l) was achieved after 3 days of fermentation of olive solid waste pretreated with H2SO4 2% at 30 oC and pH 5. The average yield of ethanol resulted from these saccharification and fermentation processes following the pretreatment of olive solid waste was 0.59 g/10 g dry olive solid residues.
Microorganisms have an active role in biotechnology for example yeasts, especially in some genus like Saccharomyces, Pichia, and Candida. C.tropicalis one of the most important species of Candida and despite it is one of the causative agents of candidiasis but it has a major role in the production of many chemical compounds. C.tropicalis in the previous study was isolated from sheep dung and morphologically and molecularly classified the result of sequencing was elucidate 100% similarity between the studied isolate and other isolates inserted in DNA Data Bank of Japan DDBJ, physiologically this isolate tolerated 6% ethanol concentration in broth media with the ability to the pro
... Show MoreIn this research, production of ethanol from waste potatoes fermentation was studied using Saccharmyses cerevisiae. Potato Flour was prepared from potato tubers after cooking and drying at 85°C. Homogenous slurry of potato flour was prepared in water at solid liquid ratio 1:10. Liquefaction of potato flour slurry with α-amylase at 80°C for 40 min followed by saccharification with glucoamylase at 65°C for 2 hr .Fermentation of hydrolysate with Saccharomyces cerevisiae at 35°C for two days resulted in production of 33 g/l ethanol.
The parameters studied were; temperature, time of fermentation and pH. It was found that Saccharification process is affected by enzyme Amylo 300 conc
... Show MoreBioethanol production from sugar fermentation is one of the most sustainable alternatives to substitute fossil fuel. production of bioethanol from low grade dates which are rich of sugars. An available sugar from a second grade dates (reduction sugar) was 90g/l in this study. Sugar can be served as essential carbon sources for yeast growth in aerobic condition and can also be converted to bioethanol in anaerobic condition. The effect of various parameters on bioethanol production, fermentation time, pH-values, inoculum size and initial sugar concentration were varied in order to determine the optimal of bioethanol production. The highest bioethanol yield was 33g/l which was obtained with sugar concentration 90 g/l, inocu
... Show MoreRed pigmented undecylprodigiosin produced by Streptomyces coelicolor (A3)2 is a
promising drug owing to its characteristics of antibacterial, antifungal,
immunosuppressive and anticancer activities. The culture of S. coelicolor in liquid
medium produces mainly the blue pigmented actinorhodin and only low quantities of
undecylprodigiosin. From an industrial point of view, it is necessary to find a strategy to
improve undecylprodigiosin production. The present study provides evidence that
cultivation of S. coelicolor on solid substrate resulted in a reversal in this pattern of
antibiotic production as the production of undecylprodigiosin was significantly increased
and actinorhodin was completely suppressed. Four di
Thirty local fungal isolates according to Aspergillus niger were screened for Inulinase production on synthetic solid medium depending on inulin hydrolysis appear as clear zone around fungal colony. Semi-quantitative screening was performed to select the most efficient isolate for inulinase production. the most efficient isolate was AN20. The optimum condition for enzyme production from A. niger isolate was determined by busing a medium composed of sugar cane moisten with corn steep liquor 5;5 (v/w) at initial pH 5.0 for 96 hours at 30 0C . Enzyme productivity was tested for each of the yeast Kluyveromyces marxianus, the fungus A. niger AN20 and for a mixed culture of A. niger and K. marxianus. The productivity of A. niger gave the highest
... Show More