Ultrasound imaging has some problems with image properties output. These affects the specialist decision. Ultrasound noise type is the speckle noise which has a grainy pattern depending on the signal. There are two parts of this study. The first part is the enhancing of images with adaptive Weiner, Lee, Gamma and Frost filters with 3x3, 5x5, and 7x7 sliding windows. The evaluated process was achieved using signal to noise ratio (SNR), peak signal to noise ratio (PSNR), mean square error (MSE), and maximum difference (MD) criteria. The second part consists of simulating noise in a standard image (Lina image) by adding different percentage of speckle noise from 0.01 to 0.06. The supervised classification based minimum distance method is used to evaluate the results depending on selecting four blocks located at different places on the image. Speckle noise was added with different percentage from 0.01 to 0.06 to calculate the coherent noise within the image. The coherent noise was concluded from the slope of the standard deviation with the mean for each noise. The results showed that the additive noise increased with the slide window size, while multiplicative noise did not change with the sliding window nor with increasing noise ratio. Wiener filter has the best results in enhancing the noise.
Machine learning-based techniques are used widely for the classification of images into various categories. The advancement of Convolutional Neural Network (CNN) affects the field of computer vision on a large scale. It has been applied to classify and localize objects in images. Among the fields of applications of CNN, it has been applied to understand huge unstructured astronomical data being collected every second. Galaxies have diverse and complex shapes and their morphology carries fundamental information about the whole universe. Studying these galaxies has been a tremendous task for the researchers around the world. Researchers have already applied some basic CNN models to predict the morphological classes
... Show MoreAudio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to
... Show MoreThe pure ZnS and ZnS-Gr nanocomposite have been prepared
successfully by a novel method using chemical co-precipitation. Also
conductive polymer PPy nanotubes and ZnS-PPy nanocomposite
have been synthesized successfully by chemical route. The effect of
graphene on the characterization of ZnS has been investigated. X-ray
diffraction (XRD) study confirmed the formation of cubic and
hexagonal structure of ZnS-Gr. Dc-conductivity proves that ZnS and
ZnS-Gr have semiconductor behavior. The SEM proved that
formation of PPy nanotubes and the Gr nanosheet. The sensing
properties of ZnS-PPy/ZnS-Gr for NO2 gas was investigated as a
function of operating temperature and time under optimal condition.
The sensitivity,
The growing interest in the use of chaotic techniques for enabling secure communication in recent years has been motivated by the emergence of a number of wireless services which require the service provider to provide low bit error rates (BER) along with information security. This paper investigates the feasibility of using chaotic communications over Multiple-Input-Multiple-Output (MIMO) channels. While the use of Chaotic maps can enhance security, it is seen that the overall BER performance gets degraded when compared to conventional communication schemes. In order to overcome this limitation, we have proposed the use of a combination of Chaotic modulation and Alamouti Space Time Block Code. The performance of Chaos Shift Keying (CSK) wi
... Show MoreThe Land Use/ Land Cover (LULC) is an essential application in many remotely sensed projects and problems. Land use is simply man-made objects such as urban, road complex targets, etc., while land covers are defined as any target and phenomenon that appear neutral. The LULC study is essential for all current and future engineering projects, as it shows the nature of the land's components, which is evident in studying and modernizing residential areas. One of the essential operations for studying LULC is the heterogeneity detection and classification calculations of satellite images and topographic maps. A part of the Baghdad, Iraq region was selected for the Landsat satellite group at different periods to detect variance and mak
... Show MoreA watermark is a pattern or image defined in a paper that seems as different shades of light/darkness when viewed by the transmitted light which used for improving the robustness and security. There are many ways to work Watermark, including the addition of an image or text to the original image, but in this paper was proposed another type of watermark is add curves, line or forms have been drawn by interpolation, which produces watermark difficult to falsify and manipulate it. Our work suggests new techniques of watermark images which is embedding Cubic-spline interpolation inside the image using Bit Plane Slicing. The Peak to Signal Noise Ratio (PSNR) and Mean Square Error (MSE) value is calculated so that the quality of the original i
... Show MoreThe field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots. To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accura
... Show MoreBiosensor is defined as a device that transforms the interactions between bioreceptors and analytes into a logical signal proportional to the reactants' concentration. Biosensors have different applications that aim primarily to detect diseases, medicines, food safety, the proportion of toxins in water, and other applications that ensure the safety and health of the organism. The main challenge of biosensors is represented in the difficulty of obtaining sensors with accuracy, specific sensitivity, and repeatability for each use of the patient so that they give reliable results. The rapid diversification in biosensors is due to the accuracy of the techniques and materials used in the manufacturing process and the interrelationshi
... Show More