Biosensor is defined as a device that transforms the interactions between bioreceptors and analytes into a logical signal proportional to the reactants' concentration. Biosensors have different applications that aim primarily to detect diseases, medicines, food safety, the proportion of toxins in water, and other applications that ensure the safety and health of the organism. The main challenge of biosensors is represented in the difficulty of obtaining sensors with accuracy, specific sensitivity, and repeatability for each use of the patient so that they give reliable results. The rapid diversification in biosensors is due to the accuracy of the techniques and materials used in the manufacturing process and the interrelationships in scientific research between various disciplines, i.e., physics and biology, engineering and biology. This research aims to define biosensors in general, classify them and show their most important applications, with a brief description of their time development and the reason for their speared in all fields.
Saccharin is firstly synthesized in 1879. It is a very well-known as an inexpensive substitute for sugar as it is a non-caloric sweetener. The article shows the properties, use, metabolism and various synthesis and reactions of saccharine. Moreover, the toxicological reports explain that saccharin is mostly responsible for the bladder tumors observed in the male rats, the relationship between the consumption of saccharin and bladder cancer is afforded by epidemiological studies. The benefit-risk evaluation for saccharin is hardly to indicate. Saccharin is a sugar substitute, frequently used either in food industry, or in pharmaceutical formulations and even in tobacco products. The chemistry of saccharin is inter
... Show MoreThe emergence of mixed matrix membranes (MMMs) or nanocomposite membranes embedded with inorganic nanoparticles (NPs) has opened up a possibility for developing different polymeric membranes with improved physicochemical properties, mechanical properties and performance for resolving environmental and energy-effective water purification. This paper presents an overview of the effects of different hydrophilic nanomaterials, including mineral nanomaterials (e.g., silicon dioxide (SiO2) and zeolite), metals oxide (e.g., copper oxide (CuO), zirconium dioxide (ZrO2), zinc oxide (ZnO), antimony tin oxide (ATO), iron (III) oxide (Fe2O3) and tungsten oxide (WOX)), two-dimensional transition (e.g., MXene), metal–organic framework (MOFs), c
... Show MoreThe Mannich reaction is one of the most important types of organic chemistry fundamental reactions. It is a crucial stage in the production of various medicines, natural goods, and industrial chemicals. Chemists' imaginations have always been piqued because of this. In general, the Mannich reactions can be used as part of a tandem reaction sequence to produce complex target molecules in an elegant and often easy manner. The following article examines and summarizes methods for synthesizing Mannich derivatives, in addition to offering a survey of recent advancements in several fields’ applications of the Mannich reaction, such as biological applications, antimicrobial activity, anticancer activity, anti-inflammation and antio
... Show MoreIn present days, drug resistance is a major emerging problem in the healthcare sector. Novel antibiotics are in considerable need because present effective treatments have repeatedly failed. Antimicrobial peptides are the biologically active secondary metabolites produced by a variety of microorganisms like bacteria, fungi, and algae, which possess surface activity reduction activity along with this they are having antimicrobial, antifungal, and antioxidant antibiofilm activity. Antimicrobial peptides include a wide variety of bioactive compounds such as Bacteriocins, glycolipids, lipopeptides, polysaccharide-protein complexes, phospholipids, fatty acids, and neutral lipids. Bioactive peptides derived from various natural sources like bacte
... Show MoreThe term "nano gold," also known as "gold nanoparticles," is commonly used. These particles are extremely small, with a diameter of less than 100 nm, which is only a fraction of the width of a human hair. Due to their tiny size, nano gold particles are often found in a colloidal solution, where they are suspended in a liquid stabilizer. This colloidal gold is essentially another name for nano gold. The main method for producing gold nanoparticles in a colloidal solution is the citrate synthesis technique, which involves combining different solutions to precipitate the gold nanoparticles. In biological systems, copper complexes play a significant role at the active sites of many metalloproteins. These complexes have potential applications in
... Show MoreAlizarin is one of the popularly used and wide separated compounds with a chemical name (1,2- dihydroxy-9,10-anthraquinone) which belong to the anthraquinones family that contain three aromatic conjugated rings and in the central rings it contains two ketonic groups.1
Cerium (III), Neodymium (III) and Samarium (III) Complexes existent a wide range of implementation that stretch from their play in the medicinal and pharmaceutical area because of their major significant pharmacological characteristic such as antifungal, anti-cancer, anti-bacterial ,anti-human immunodeficiency virus ,antineoplastic, anti-inflammation,inhibition corrosion,in some industrial (polymers, Azo dye).It is likely to open avenuesto research among various disciplines such as physics, electronics, chemistry and materials science by these complexes that contain exquisitely designed organic molecules.This paper reviews the definition, importance and various applications of Cerium (III), Neodymium (III) and Samarium (III) Complexe
... Show More