The main goal of this paper is to introduce the higher derivatives multivalent harmonic function class, which is defined by the general linear operator. As a result, geometric properties such as coefficient estimation, convex combination, extreme point, distortion theorem and convolution property are obtained. Finally, we show that this class is invariant under the Bernandi-Libera-Livingston integral for harmonic functions.
In this paper, we characterize normal composition operators induced by holomorphic self-map , when and .Moreover, we study other related classes of operators, and then we generalize these results to polynomials of degree n.
The purpose of this paper is to study the properties of the
partial level density ( ) l g and the total level density g ( ),
numerically obtained as a l sum of ( ) l g up to 34 max l , for
a Harmonic – Oscillator potential well. This method applied the
quantum – mechanical phase shift technique and concentrated
on the continuum region. Also a discussion of peculiarities of
quantal calculation for single particle level density of energy –
dependent potential
In this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending on the mean square error criteria in where the estimation methods that were used are (Generalized Least Squares, M Robust, and Laplace), and for different sizes of samples (20, 40, 60, 80, 100, 120). The M robust method is demonstrated the best metho
... Show MoreIn this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending
In this work, a weighted H lder function that approximates a Jacobi polynomial which solves the second order singular Sturm-Liouville equation is discussed. This is generally equivalent to the Jacobean translations and the moduli of smoothness. This paper aims to focus on improving methods of approximation and finding the upper and lower estimates for the degree of approximation in weighted H lder spaces by modifying the modulus of continuity and smoothness. Moreover, some properties for the moduli of smoothness with direct and inverse results are considered.
In the analysis of multiple linear regression, the problem of multicollinearity and auto-correlation drew the attention of many researchers, and given the appearance of these two problems together and their bad effect on the estimation, some of the researchers found new methods to address these two problems together at the same time. In this research a comparison for the performance of the Principal Components Two Parameter estimator (PCTP) and The (r-k) class estimator and the r-(k,d) class estimator by conducting a simulation study and through the results and under the mean square error (MSE) criterion to find the best way to address the two problems together. The results showed that the r-(k,d) class estimator is the best esti
... Show MoreThe paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.
A general velocity profile for a laminar flow over a flat plate with zero incidence is obtained by employing a new boundary condition to the other available boundary conditions. The general velocity profile is mathematically simple and nearest to the exact solution. Also other related values, boundary layer thickness, displacement thickness, momentum thickness and coefficient of friction are nearest to the exact solution compared with other corresponding values for other researchers.
A general velocity profile for a laminar flow over a flat plate with zero incidence is obtained by employing a new boundary condition to the other available boundary conditions. The general velocity profile is mathematically simple and nearest to the exact solution. Also other related values, boundary layer thickness, displacement thickness, momentum thickness and coefficient of friction are nearest to the exact solution compared with other corresponding values for other researchers.