Preferred Language
Articles
/
ijs-4814
A Class of Harmonic Multivalent Functions for Higher Derivatives Associated with General Linear Operator
...Show More Authors

    The main goal of this paper is to introduce the higher derivatives multivalent harmonic function class, which is defined by the general linear operator. As a result, geometric properties such as coefficient estimation, convex combination, extreme point, distortion theorem and convolution property are obtained. Finally, we show that this class is invariant under the Bernandi-Libera-Livingston integral for harmonic functions.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 05 2011
Journal Name
Baghdad Science Journal
Some Probability Characteristics Functions of the Solution of a Stochastic Non-Linear Fredholm Integral Equation of the Second Kind
...Show More Authors

In this research, some probability characteristics functions (probability density, characteristic, correlation and spectral density) are derived depending upon the smallest variance of the exact solution of supposing stochastic non-linear Fredholm integral equation of the second kind found by Adomian decomposition method (A.D.M)

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Feb 27 2022
Journal Name
Iraqi Journal Of Science
Linear and Non-Linear Stability Analysis for Thermal Convection in A Bidispersive Porous Medium with Thermal Non-Equilibrium Effects: Linear and non-linear stability analysis
...Show More Authors

     The linear instability and nonlinear stability analyses are performed for the model of bidispersive local thermal non-equilibrium flow. The effect of local thermal non-equilibrium on the onset of convection in a bidispersive porous medium of Darcy type is investigated.  The temperatures in the macropores and micropores are allowed to be different. The effects of various interaction parameters on the stability of the system are discussed. In particular, the effects of the porosity modified conductivity ratio parameters,  and , with the int

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of College Of Education
Some of the Probability Characteristics Functions of the Solution of a System of Random Linear Inequalities
...Show More Authors

Publication Date
Sun Mar 02 2008
Journal Name
Baghdad Science Journal
Orthogonal Functions Solving Linear functional Differential EquationsUsing Chebyshev Polynomial
...Show More Authors

A method for Approximated evaluation of linear functional differential equations is described. where a function approximation as a linear combination of a set of orthogonal basis functions which are chebyshev functions .The coefficients of the approximation are determined by (least square and Galerkin’s) methods. The property of chebyshev polynomials leads to good results , which are demonstrated with examples.

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Oct 26 2017
Journal Name
International Journal Of Pure And Applied Mathematics
ON CONVEX FUNCTIONS, $E$-CONVEX FUNCTIONS AND THEIR GENERALIZATIONS: APPLICATIONS TO NON-LINEAR OPTIMIZATION PROBLEMS
...Show More Authors

Contents IJPAM: Volume 116, No. 3 (2017)

View Publication
Publication Date
Sun Dec 02 2012
Journal Name
Baghdad Science Journal
Numerical Approach of Linear Volterra Integro-Differential Equations Using Generalized Spline Functions
...Show More Authors

This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples

View Publication Preview PDF
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Three-Dimensional Nonlinear Integral Operator with the Modelling of Majorant Function
...Show More Authors

In this paper, the process for finding an approximate solution of nonlinear three-dimensional (3D) Volterra type integral operator equation (N3D-VIOE) in R3 is introduced. The modelling of the majorant function (MF) with the modified Newton method (MNM) is employed to convert N3D-VIOE to the linear 3D Volterra type integral operator equation (L3D-VIOE). The method of trapezoidal rule (TR) and collocation points are utilized to determine the approximate solution of L3D-VIOE by dealing with the linear form of the algebraic system. The existence of the approximate solution and its uniqueness are proved, and illustrative examples are provided to show the accuracy and efficiency of the model.

Mathematical Subject Classificat

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Apr 01 2021
Journal Name
Chaos, Solitons & Fractals
Modeling and analysis of an SI1I2R epidemic model with nonlinear incidence and general recovery functions of I1
...Show More Authors

In this paper, we established a mathematical model of an SI1I2R epidemic disease with saturated incidence and general recovery functions of the first disease I1. Considering the basic reproduction number, we obtained conditions for both disease-free and co-existing cases. The equilibrium points local stability is verified by using the Routh-Hurwitz criterion, while for the global stability, we used a suitable Lyapunov function to analyze the endemic spread of the positive equilibrium point. Moreover, we carried out the local bifurcation around both equilibrium points (disease-free and co-existing), where we obtained that the disease-free equilibrium point undergoes a transcritical bifurcation. We conduct numerical simulations that suppo

... Show More
View Publication
Publication Date
Tue May 30 2023
Journal Name
Iraqi Journal Of Science
Ground State Structure of Helium and Phosphorus Isotopes using the Radial Wave Functions of Harmonic-Oscillator and Hulthen Potentials
...Show More Authors

     The ground state density distributions and electron scattering Coulomb form factors of Helium (4,6,8He) and Phosphorate (27,31P) isotopes are investigated in the framework of nuclear shell model. For stable (4He) and (31P) nuclei, the core and valence parts are studied through Harmonic-oscillator (HO) and Hulthen potentials. Correspondingly, for exotic (6,8He) and (27P) nuclei, the HO potential is applied to the core parts only, while the Hulthen potential is applied to valence parts. The parameters for HO and Hulthen are chosen to reproduce the available experimental size radii for all nuclei under study. Finally, the CO component of electron scattering charge fo

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun May 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On the Riesz Means of Expansion by Riesz Bases Formed by Eigen Functions for the Ordinary Differential Operator of 2mth Order
...Show More Authors

  The aim of this paper is to prove a theorem on the Riesz means of expansions with respect to Riesz bases, which extends the previous results of [1] and [2] on the Schrödinger operator and the ordinary differential operator of 4-th order to the operator of order 2m by using the eigen functions of the ordinary differential operator. Some Symbols that used in the paper:     the uniform norm. <,>   the inner product in L2. G   the set of all boundary elements of G. ˆ u   the dual function of u.

View Publication Preview PDF