In this study, some physical and mechanical properties of soil samples collected from the campus site of College of Science, University of Diyalahave been evaluated. All laboratory tests were performed according to the standards of American Society for Testing and Materials (ASTM). The test results showed that the range of soil water content wwas (13.89%-16.34%) with an average of 15.44%. The specific gravity range was (2.58-2.77) with an average of 2.66. The range of Liquid Limit LL was (26.20-35.20%) with an average of 32.22%.The range of Plastic Limit PL was (18.63-23.24%) with average of 21.06%. The range of Plasticity Index was (7.57-12.42) with an average of 11.61. Based on USCS classifications, the soil can be considered as fine-grained soil type CL (CL is inorganic clay soil of low to medium plasticity). Liquidity Index LI values were ranged from 0.002 to 0.560 while Consistency Index CI ranged from 0.271 to 0.998 indicating a plastic state. The average optimum water OWC content and maximum dry density MDD calculated from Standard Proctor Compaction test were 10.36% and 1.79g/cm3, respectively. Shear test results revealed that the cohesion strength range was (5-10 Kg/m2) with an average of 7.8 Kg/m2, and the angle of internal friction range was (25-30o) with an average of 29.4o. The measured values of angle of internal friction are within the range of CL soil. However, the cohesion strength is relatively low as cohesion of clay soil is affected by different factors such water content and clay content. The compression index derived from consolidation test was ranged from 0.03 to 0.25, and the calculated values of void ratio (0.94-1.04) and porosity (0.48-0.51) are within the range of clay soils. Physical and mechanical properties presented in the current study are useful for future engineering works scheduled at the campus site of College of Science,University of Diyala.
Precision irrigation applications are used to optimize the use of water resources, by controlling plant water requirements through using different systems according to soil moisture and plant growth periods. In precision irrigation, different rates of irrigation water are applied to different places of the land in comparison with traditional irrigation methods. Thus the cost of irrigation water is reduced. As a result of the fact that precise irrigation can be used and applied in all irrigation systems, it spreads rapidly in all irrigation systems. The purpose of the Precision Agriculture Technology System (precision irrigation) , is to apply the required level of irrigation according to agricultural inputs to the specified location , by us
... Show MoreThis paper deals with load-deflection behavior the jointed plain concrete pavement system using steel dowel bars as a mechanism to transmit load across the expansion joints. Experimentally, four models of the jointed plain concrete pavement system were made, each model consists of two slabs of plain concrete that connected together across expansion by two dowel bars and the concrete slab were supported by the subgrade soil. Two variables were dealt with, the first is diameter of dowel bar (12, 16 and 20 mm) and the second is type of the subgrade soil, two types of soil were used which classified according to the (AASHTO): Type I (A-6) and type II (A-7-6). Experimental results showed that increasing dowel bar diameter from 12 mm to 20 mm
... Show MoreModeling the microclimate of a greenhouse located in Baghdad under its weather conditions to calculate the heating and cooling loads by computer simulation. Solar collectors with a V-corrugated absorber plate and an auxiliary heat source were used as a heating system. A rotary silica gel desiccant dehumidifier, a sensible heat exchanger, and an evaporative cooler were added to the collectors to form an open-cycle solar assisted desiccant cooling system. A dynamic model was adopted to predict the inside air and the soil surface temperatures of the greenhouse. These temperatures are used to predict the greenhouse heating and cooling loads through an energy balance method which takes into account the soil heat gain. This is not included in
... Show MoreBackground: Alcohol remains the single most significant cause of liver disease throughout the Western world, responsible for between 40 and 80% of cases of cirrhosis in different countries. Many of the factors underlying the development of alcoholic liver injury remain unknown, and significant questions remain about the value of even very basic therapeutic strategies.
Patients and Methods: In a cross sectional study, 113 alcoholic patients with evidence of liver disease in the absence of other significant etiology attending the Gastoenterorology and Hepatology Teaching Hospital between December 2001 and December 2003 were studied for the hematological and biochemical spectrum of alcoholic liver disease in