Face detection is one of the important applications of biometric technology and image processing. Convolutional neural networks (CNN) have been successfully used with great results in the areas of image processing as well as pattern recognition. In the recent years, deep learning techniques specifically CNN techniques have achieved marvellous accuracy rates on face detection field. Therefore, this study provides a comprehensive analysis of face detection research and applications that use various CNN methods and algorithms. This paper presents ten of the most recent studies and illustrate the achieved performance of each method.
Background: White-spot lesion is one of the problems associated with the fixed orthodontic treatment. The aims of this in-vitro study were to investigate enamel damage depth on adhesive removal when the adhesive were surrounded by sound, demineralized or demineralized enamel that had been re-mineralized prior to adhesive removal using 10% Nano-Hydroxy apatite and to determine the effect of three different adhesive removal techniques. Materials and methods: Composite resin adhesive (3M Unitek) was bonded to 60 human upper premolars teeth which were randomly divided in to three groups each containing ten sound teeth and ten teeth with demineralized and re-mineralized lesions adjacent to the adhesive. A window of 2 mm was prepared on the bucca
... Show MoreThis research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
The rapid increase in the number of older people with Alzheimer's disease (AD) and other forms of dementia represents one of the major challenges to the health and social care systems. Early detection of AD makes it possible for patients to access appropriate services and to benefit from new treatments and therapies, as and when they become available. The onset of AD starts many years before the clinical symptoms become clear. A biomarker that can measure the brain changes in this period would be useful for early diagnosis of AD. Potentially, the electroencephalogram (EEG) can play a valuable role in early detection of AD. Damage in the brain due to AD leads to changes in the information processing activity of the brain and the EEG which ca
... Show MoreAround 65 million individuals suffer from epilepsy worldwide, and when it is not properly treated, it is linked to higher rates of physical harm and mortality. Due to the requirement for long‐term therapy and the side effects of many medications, medication compliance is a significant issue. The purpose of this review was to summarize the findings of previous studies examining the quality of life (QOL), adherence, patient education, and medication knowledge, as well as the impact of a pharmacist‐led educational intervention. Additionally, to find out if these studies benefit epileptic patients, to find the appropriate method used to help them in all aspects of their lives, and to use these in future studies. A systematic and comprehensi
... Show MoreDeep learning techniques allow us to achieve image segmentation with excellent accuracy and speed. However, challenges in several image classification areas, including medical imaging and materials science, are usually complicated as these complex models may have difficulty learning significant image features that would allow extension to newer datasets. In this study, an enhancing technique for object detection is proposed based on deep conventional neural networks by combining levelset and standard shape mask. First, a standard shape mask is created through the "probability" shape using the global transformation technique, then the image, the mask, and the probability map are used as the levelset input to apply the image segme
... Show MoreRecommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness o
... Show MoreThe study aimed to study the role of technology in the production of the mural photography, and to develop its concept to the viewer, through the achievement of the aesthetic and functional vision. Through this study, some types of these techniques, which are organically related to architecture, were identified.
The mural photography includes a huge amount of techniques, and methods, and the researcher presented them through five techniques: (AlTamira, Alfresk, acrylic, mosaic, and glass art, which takes the architectural character.
The research consists of:
Methodological framework: research problem, research objectives, research limits, importance of research, and definition of terms.
Theoretical framewo
... Show MoreAbstract
The current research aims to examine the effectiveness of a training program for children with autism and their mothers based on the Picture Exchange Communication System to confront some basic disorders in a sample of children with autism. The study sample was (16) children with autism and their mothers in the different centers in Taif city and Tabuk city. The researcher used the quasi-experimental approach, in which two groups were employed: an experimental group and a control group. Children aged ranged from (6-9) years old. In addition, it was used the following tools: a list of estimation of basic disorders for a child with autism between (6-9) years, and a training program for children with autism
... Show MoreCommunication is one of the vast and rapidly growing fields of engineering, where
increasing the efficiency of communication by overcoming the external
electromagnetic sources and noise is considered a challenging task. To achieve
confidentiality for color image transmission over the noisy communication channels
a proposed algorithm is presented for image encryption using AES algorithm. This
algorithm combined with error detections using Cyclic Redundancy Check (CRC) to
preserve the integrity of the encrypted data. This paper presents an error detection
method uses Cyclic Redundancy Check (CRC), the CRC value can be generated by
two methods: Serial and Parallel CRC Implementation. The proposed algorithm for
the