Communication is one of the vast and rapidly growing fields of engineering, where
increasing the efficiency of communication by overcoming the external
electromagnetic sources and noise is considered a challenging task. To achieve
confidentiality for color image transmission over the noisy communication channels
a proposed algorithm is presented for image encryption using AES algorithm. This
algorithm combined with error detections using Cyclic Redundancy Check (CRC) to
preserve the integrity of the encrypted data. This paper presents an error detection
method uses Cyclic Redundancy Check (CRC), the CRC value can be generated by
two methods: Serial and Parallel CRC Implementation. The proposed algorithm for
the encryption and error detection using parallel CRC64 (Slicing-by-4 algorithm)
implementation with multiple look table approach for the encrypted image. The goal
of the proposed algorithm optimizes the size of the redundant bits needed to attach
to the original data for the purpose of error detection; this reduction is considered
necessary to meet the restriction for some computer architectures. Furthermore, it is
suitable for implementing in software rather than in hardware. The proposed
algorithm uses different tested images by added different noise ratios (1% and 5%)
of total images size to study the noise effect on the encrypted images. The noise
added on single and multi bits position and study the effect on the output results.
The obtained results shown that the small size of the image the large CRC64
affected by noise while the large size of image yields a stable or fixed number of
affected CRC64.
Steganography is defined as hiding confidential information in some other chosen media without leaving any clear evidence of changing the media's features. Most traditional hiding methods hide the message directly in the covered media like (text, image, audio, and video). Some hiding techniques leave a negative effect on the cover image, so sometimes the change in the carrier medium can be detected by human and machine. The purpose of suggesting hiding information is to make this change undetectable. The current research focuses on using complex method to prevent the detection of hiding information by human and machine based on spiral search method, the Structural Similarity Index Metrics measures are used to get the accuracy and quality
... Show MoreThe widespread use of images, especially color images and rapid advancement of computer science, have led to an emphasis on securing these images and defending them against intruders. One of the most popular ways to protect images is to use encryption algorithms that convert data in a way that is not recognized by someone other than the intended user. The Advanced Encryption Standard algorithm (AES) is one of the most protected encryption algorithms. However, due to various types of theoretical and practical assaults, like a statistical attack, differential analysis, and brute force attack, its security is under attack.
In this paper, a modified AES coined as (M-AES) is proposed to improve the efficiency
... Show MoreDeepFake is a concern for celebrities and everyone because it is simple to create. DeepFake images, especially high-quality ones, are difficult to detect using people, local descriptors, and current approaches. On the other hand, video manipulation detection is more accessible than an image, which many state-of-the-art systems offer. Moreover, the detection of video manipulation depends entirely on its detection through images. Many worked on DeepFake detection in images, but they had complex mathematical calculations in preprocessing steps, and many limitations, including that the face must be in front, the eyes have to be open, and the mouth should be open with the appearance of teeth, etc. Also, the accuracy of their counterfeit detectio
... Show MoreIt is known that images differ from texts in many aspects, such as high repetition and correlation, local structure, capacitance characteristics and frequency. As a result, traditional encryption methods can not be applied to images. In this paper we present a method for designing a simple and efficient messy system using a difference in the output sequence. To meet the requirements of image encryption, we create a new coding system for linear and nonlinear structures based on the generation of a new key based on chaotic maps.
The design uses a kind of chaotic maps including the Chebyshev 1D map, depending on the parameters, for a good random appearance. The output is a test in several measurements, including the complexity of th
... Show MoreThis paper presents a new RGB image encryption scheme using multi chaotic maps. Encrypting an image is performed via chaotic maps to confirm the properties of secure cipher namely confusion and diffusion are satisfied. Also, the key sequence for encrypting an image is generated using a combination of 1D logistic and Sine chaotic maps. Experimental results and the compassion results indicate that the suggested scheme provides high security against several types of attack, large secret keyspace and highly sensitive.
Spatial and frequency domain techniques have been adopted in this search. mean
value filter, median filter, gaussian filter. And adaptive technique consists of
duplicated two filters (median and gaussian) to enhance the noisy image. Different
block size of the filter as well as the sholding value have been tried to perform the
enhancement process.
Image registration plays a significant role in the medical image processing field. This paper proposes a development on the accuracy and performance of the Speeded-Up Robust Surf (SURF) algorithm to create Extended Field of View (EFoV) Ultrasound (US) images through applying different matching measures. These measures include Euclidean distance, cityblock distance, variation, and correlation in the matching stage that was built in the SURF algorithm. The US image registration (fusion) was implemented depending on the control points obtained from the used matching measures. The matched points with higher frequency algorithm were proposed in this work to perform and enhance the EFoV for the US images, since the maximum accurate matching po
... Show MoreThis paper proposes a new encryption method. It combines two cipher algorithms, i.e., DES and AES, to generate hybrid keys. This combination strengthens the proposed W-method by generating high randomized keys. Two points can represent the reliability of any encryption technique. Firstly, is the key generation; therefore, our approach merges 64 bits of DES with 64 bits of AES to produce 128 bits as a root key for all remaining keys that are 15. This complexity increases the level of the ciphering process. Moreover, it shifts the operation one bit only to the right. Secondly is the nature of the encryption process. It includes two keys and mixes one round of DES with one round of AES to reduce the performance time. The W-method deals with
... Show MoreBackground and Aim: due to the rapid growth of data communication and multimedia system applications, security becomes a critical issue in the communication and storage of images. This study aims to improve encryption and decryption for various types of images by decreasing time consumption and strengthening security. Methodology: An algorithm is proposed for encrypting images based on the Carlisle Adams and Stafford Tavares CAST block cipher algorithm with 3D and 2D logistic maps. A chaotic function that increases the randomness in the encrypted data and images, thereby breaking the relation sequence through the encryption procedure, is introduced. The time is decreased by using three secure and private S-Boxes rather than using si
... Show More