Neutron differential-elastic and inelastic scattering cross-sections of Yttrium-89 isotope were calculated at energies 8,10,12,14, and 17 MeV, at angles distributed between 20o and 180o in the center of mass frame. The obtained results data were interpreted using a spherical optical potential model and Eikonal approximation, to examine the effect of the first-order Eikonal correction on the effective potential. The real and imaginary parts of optical potential were calculated. It was found that the nominal imaginary potential increase monotonically while the effective imaginary one has a pronounced minimum around r = 6fm and then increases. The analysis of the relative energy of the projectile and reaction product was taken into account. The main results were compared with available experimental data at EXFOR.
The differential cross section for the Rhodium and Tantalum has been calculated by using the Cross Section Calculations (CSC) in range of energy(1keV-1MeV) . This calculations based on the programming of the Klein-Nashina and Rayleigh Equations. Atomic form factors as well as the coherent functions in Fortran90 language Machine proved very fast an accurate results and the possibility of application of such model to obtain the total coefficient for any elements or compounds.
Localized surface plasmons (LSPs) are a potentially valuable property for the practical use of small size metallic particles. Exploiting the LSPs in metallic nanoparticle (NP)-based solar cells was shown to increase the efficiency of solar panels. A large extinction cross section of NPs allows for high scattering of light at the surface of the panel, which reduces the panel thickness, allowing for small size and low-cost solar cells. In this paper, the extinction cross-section of spherical nanoparticles is studied and simulated numerically. Surface plasmons were first modeled using the Drude’s model then the scattering and absorption cross-sections were derived. Commercial3D simulation software was used to model the near field dis
... Show MoreThe present work determines the particle size based only on the number of tracks detected in a cluster created by a hot particle on the CR-39 solid state nuclear track detector and depending on the exposure time. The mathematical model of the cross section developed here gives the relationship between alpha particle emitting from the (n, α) reaction and the number of tracks created and distribution of tracks created on the surface of the track detector. In an experiment performed during this work, disc of boron compound (boric acid or sodium tetraborate) of different weights were prepared and exposed to thermal neutron from the source. Chemical etching is processes of path formation in the detector, during which a suitable etching solut
... Show MoreInelastic longitudinal electron scattering form factors for second
excited state C42 in 42Ti nucleus have been calculated using shell
model theory. Fp shell model space with configuration (1f7/2 2p3/2
1f5/2 2p1/2) has been adopted in order to distribute the valence
particles (protons and neutrons) outside an inert core 40Ca. Modern
model space effective interactions like FPD6 and GXPF1 have been
used to generate model space vectors and harmonic oscillator wave
function as a single particle wave function. Discarder space (core
orbits + higher orbits) has been included in (core polarization effect)
as a first order correction in microscopic theory to measure the
interested multipole form factors via the model
The peristaltic transport of power-law fluid in an elastic tapered tube with variable cross-section induced by dilating peristaltic wave is studied. The exact solution of the expression for axial velocity, radial velocity, stream function, local shear stress, volume of flow rate and pressure gradient are obtained under the assumption of long wavelength and low Reynolds number. The effects of all parameters that appear in the problem are analyzed through graphs. The results showed that the flux is sinusoidal in nature and it is an increasing function with the increase of whereas it is a decreasing function with the increase of . An opposite behavior for shear strain is noticed compared to pressure gradient. Finally, trapping p
... Show MoreThe ground state proton, neutron and matter densities and
corresponding root mean square radii of unstable proton-rich 17Ne
and 27P exotic nuclei are studied via the framework of the twofrequency
shell model. The single particle harmonic oscillator wave
functions are used in this model with two different oscillator size
parameters core b and halo , b the former for the core (inner) orbits
whereas the latter for the halo (outer) orbits. Shell model calculations
for core nucleons and for outer (halo) nucleons in exotic nuclei are
performed individually via the computer code OXBASH. Halo
structure of 17Ne and 27P nuclei is confirmed. It is found that the
structure of 17Ne and 27P nuclei have 2
5 / 2 (1d ) an
The binary cluster model (BCM) and the two-frequency shell model (TFSM) have been used to study the ground state matter densities of neutron-rich 6He and 11Li halo nuclei. Calculations show that both models provide a good description on the matter density distribution of above nuclei. The root-mean square (rms) proton, neutron and matter radii of these halo nuclei obtained by TFSM have been successfully obtained. The elastic charge form factors for these halo nuclei are studied through combining the charge density distribution obtained by TFSM with the plane wave Born approximation (PWBA).
The elastic transverse electron scattering form factors have been studied for the 11Li nucleus using the Two- Frequency Shell Model (TFSM) approach. The single-particle wave functions of harmonic-oscillator (HO) potential are used with two different oscillator parameters bcore and bhalo. According to this model, the core nucleons of 9Li nucleus are assumed to move in the model space of spsdpf. The outer halo (2-neutron) in 11Li is assumed to move in the pure 1p1/2, 1d5/2, 2s1/2 orbit. The shell model calculations are carried ou
... Show MoreIn this study, light elements for 13C , 16O for (α,n) and (n,α) reactions as well as α-particle energy from 2.7 MeV to 3.08 MeV are used as far as the data of reaction cross sections are available. The more recent cross sections data of (α,n) and (n,α) reactions are reproduced in fine steps 0.02 MeV for 16O (n,α) 13C in the specified energy range, as well as cross section (α,n) values were derived from the published data of (n,α) as a function of α-energy in the same fine energy steps by using the principle inverse reactions. This calculation involves only the ground state of 13C , 16O in the reactions 13C (α,n) 16O and 16O (n,α) 13C.