In this study, light elements for 13C , 16O for (α,n) and (n,α) reactions as well as α-particle energy from 2.7 MeV to 3.08 MeV are used as far as the data of reaction cross sections are available. The more recent cross sections data of (α,n) and (n,α) reactions are reproduced in fine steps 0.02 MeV for 16O (n,α) 13C in the specified energy range, as well as cross section (α,n) values were derived from the published data of (n,α) as a function of α-energy in the same fine energy steps by using the principle inverse reactions. This calculation involves only the ground state of 13C , 16O in the reactions 13C (α,n) 16O and 16O (n,α) 13C.
In this study, light elements 19F ,22Na for (α,n) and (n,α) reactions as well as α-particle energy from a threshold energy to 10 MeV are used according to the available data of reaction cross sections. The more recent cross sections data of (α,n) and (n,α) reactions are reproduced in fine steps 86.4 KeV for 22Na (n,α) 19F in the specified energy range, as well as cross section (α,n) values were derived from the published data of (n,α) as a function of αenergy in the same fine energy steps by using the principle inverse reactions. This calculation involves only the ground state of 19F ,22Na in the reactions 19F (α,n) 22Na , 2
... Show MoreIn this study, light elements Li ,10B for (a,n) and (n,a) reactions
as well as o-particle energy from threshold energy to 10 MeV are
used according to the available data of reaction cross sections. The
more recent cross sections data of (a,n) and (n,a) reactions are
reproduced in fine steps 42 Kev for 10B(n,o) Li in the specified
energy range, as well as cross section (o,n) Values were derived from
the published data of (n,a) as a function of a-energy in the same fine
energy steps by using the principle inverse reactions. This calculation
involves only the ground state of Li OB in the reactions 'Li(a,n) B
B (n,a) Li
Introduction
When two charged nuclei overcome their Coulomb repulsion, a
rearrangement
Both 13C 16O and 22Ne 25Mg reactions perform a cosmic role in the production of neutrons in AGB stars, which significantly contributes to the nucleosynthesis via the s-process. The astrophysical S-factor for both reactions is calculated in this research, utilizing EMPIRE code and depending on two parameter sets for the optical potential. These datasets were published earlier by McFadden and Satchler (denoted here as MFS) and Avrigeanu and Hodgson (denoted as AH) for the non-resonant region of the spectrum and over a temperature range of . The extrapolated S-factor at zero energy is derived to be and for 13C 16O, while the values were and fo
... Show MoreIn this study light elements 10B , 10Be for 10B(n,p)10Be reaction as well as proton energy from 0.987 MeV to 2.028 MeV with threshold energy (1.04MeV) are used according to the available data of reaction cross sections. The more recent cross sections data of 10Be(p,n)10B reaction is reproduced in fin steps in the specified energy range , as well as cross section (p,n) values were derived from the published data of (n,p) as a function of energy in the same fine energy steps by using the reciprocity theory of principle inverse reaction . This calculation involves only the first excited state of 10B , 10Be in the reactions 10Be(p,n)10B and 10B(n,p)10Be.
The biggest problem of structural materials for fusion reactor is the damage caused by the fusion product neutrons to the structural material. If this problem is overcomed, an important milestone will be left behind in fusion energy. One of the important problems of the structural material is that nuclei forming the structural material interacting with fusion neutrons are transmuted to stable or radioactive nuclei via (n, x) (x; alpha, proton, gamma etc.) reactions. In particular, the concentration of helium gas in the structural material increases through deuteron- tritium (D-T) and (n, α) reactions, and this increase significantly changes the microstructure and the properties of the structural materials. T
... Show MoreThe cross section evaluation for (α,n) reaction was calculated according to the available International Atomic Energy Agency (IAEA) and other experimental published data . These cross section are the most recent data , while the well known international libraries like ENDF , JENDL , JEFF , etc. We considered an energy range from threshold to 25 MeV in interval (1 MeV). The average weighted cross sections for all available experimental and theoretical(JENDL) data and for all the considered isotopes was calculated . The cross section of the element is then calculated according to the cross sections of the isotopes of that element taking into account their abundance . A mathematical representative equation for eac
... Show MoreThe Harmonic Oscillator (HO) and Gaussian (GS) wave functions within the Binary Cluster Model (BCM) were employed to investigate neutron, proton and matter densities of the ground state as well as the elastic proton form factors of one neutron 8Li and 22N halo nuclei. The long tail is a property that is clearly shown in the neutron density. The existence of a long tail in the neutron densities of 8Li and 22N indicates that these nuclei have a neutron halo structure. Moreover, the matter rms radii and the reaction cross section of these nuclei were calculated using the Glauber model.
The ground state proton, neutron and matter densities of exotic 11Be and 15C nuclei are studied by means of the TFSM and BCM. In TFSM, the calculations are based on using different model spaces for the core and the valence (halo) neutron. Besides single particle harmonic oscillator wave functions are employed with two different size parameters Bc and Bv. In BCM, the halo nucleus is considered as a composite projectile consisting of core and valence clusters bounded in a state of relative motion. The internal densities of the clusters are described by single particle Gaussian wave functions.
Elastic electron scattering proton f
... Show MoreThe production of fission products during reactor operation has a very important effect on reactor reactivity .Results of neutron cross section evaluations are presented for the main product nuclides considered as being the most important for reactor calculation and burn-up consideration . Data from the main international libraries considered as containing the most up-to-date nuclear data and the latest experimental measurements are considered in the evaluation processes, we describe the evaluated cross sections of the fission product nuclides by making inter comparison of the data and point out the discrepancies among libraries.
The calculated neutron yields from (α, n) reactions are very important in analyzing radiation shielding of spent fuel storage, transport and safe handling. The cross sections of 63Cu (α, n) 66Ga and 65Cu (α, n) 68Ga reactions are calculated for different α-energies using different sets of programs using Matlab language. The values deduced energy is from threshold to Eα= 30 MeV and to Eα= 40 MeV for 63Cu (α, n) 66Ga and 65Cu (α, n) 68Ga respectively. The weight average cross section was then used to calculate the neutron yields y0 (n/106α) for each reaction .The empirical formula was then suggested to calculate total neutron yield to each isotope.