The reservoir characterization of Lower Qamchuqa (Shu'aiba) Formation (Aptian) is studied at the well BH-86 of Bai- Hassan Oilfield in Kirkuk area, Northern Iraq. The lithological study (of 91 thin sections) revealed that the formation consists of shaly limestone, a thin bed of marl within the limestone, and dolomitic limestone. Four petrographic microfacies were noticed Lime mudstone microfacies, Dolomudstone microfacies, Lime wackestone microfacies, subdivided into benthonic foraminifera lime wackestone submicrofacies and bioclasts lime wackestone submicrofacies, and the last microfacies is the Lime packstone microfacies, which is subdivided into pelloidal lime packstone submicrofacies and Orbitolina lime packstone microfacies. Shale content is calculated from the gamma-ry log, showing that the formation is mainly of low shale content (less than 35%). The porosity determined from sonic, density, and neutron logs reflect that the range between <1 and 15% and in some intervals about 6% is secondary porosity type. The estimated permeability ranges between <0.01 and 2.0mD, reflecting low permeability. The formation is subdivided into six reservoir units according to the shale content, average porosity, and permeability. The unit RU-5 has the best reservoir properties among the identified units with an average shale content of about 3.15%, about 6.2% porosity, and about 1.75mD average permeability. On the other hand, the least reservoir property is noticed in the unit RU-1 with average 9.48% shale content, 3.64% porosity, and 0.5mD average permeability. The research indicates that the fractures contribute to the flow within the Lower Qamchuqa Formation. Fluids flow through the formation in four unique Hydraulic Flow Units (HFU). Only about 8% of the gross 146m of the formation is expected to have the required reservoir properties for oil production and about 68% for gas production. The actual productive thickness for oil is only about 2.8% of the gross thickness of the studied section, and it’s more than 50% of the gross thickness for gas.
The Middle Cenomanian-Early Turonian Mishrif Formation includes important carbonate reservoirs in Iraq and some other surrounding countries due to their high reservoir quality and wide geological extension. The 2D models of this study for facies, effective porosity and water saturation indicate the vertical and lateral heterogeneity of the Mishrif Formation reservoir properties in the Majnoon oil field. Construction of 2D reservoir model of the Mishrif Formation to explain the distribution of facies and petrophysical properties (effective porosity and water saturation) by using RockWorks software. The increase of effective porosity is attributed to the presence of shoal facies.The high water saturation is attributed to the existence of rest
... Show MoreThe reservoir units of Mishrif Formation in Majnoon oil field were studied by using available wireline logs (gamma ray, porosity and resistivity) and facies that derived from core and cutting samples for three wells including Mj-1, Mj-15, and Mj-20. The reservoir properties were determined and interpreted by using IP software. The results showed that unit D have the best reservoir properties due to high effective porosity, low water saturation and very low volume of shale. Furthermore, a large part of this unit was deposited in shoal environment. The other reservoir units are then graded in reservoir properties including units B, A, F & E respectively, except unit C, which is considered as a cap unit, because it consists of restricte
... Show MoreYamama Formation (Valanginian-Early Hauterivian) is one of the most important oil production reservoirs in southern Mesopotamian Zone. The Yamama Formation in south Iraq comprises outer shelf argillaceous limestones and oolitic, pelloidal, pelletal and pseudo-oolitic shoal limestones. The best oil prospects are within the oolite shoals. Yamama Formation is divided into seven zones: Upper Yamama, Reservoir Units YR-A & YR-B separated by YB-1, and YR-B Lower & two Tight zones: low (porosity, permeability and oil saturation) with variable amounts of bitumen. These reservoir units are thought to be at least partially isolated from each other.
Mishrif Formation regards one of the most important reservoirs in Iraq. Well logging represents one of the most important tool in the formation evaluation. According to the Petrophysical properties that have been gotten from well logging, Mishrif Formation in terms of reservoirs units, consist of several reservoirs units. Major reservoirs units divided into three reservoir units,MA,MB&MC. Each of these major units divided into minor reservoirs units (MB11,MB12,MC2&MC3).MB major reservoir units represent the best reservoir unit. These reservoirs units separated by cap rocks(mainly tight limestone)(CR1,CR2,CR3,CR4,CR5,CR6,and CR7).CPI were demonstrated for all wells.Hydrocarbon saturation vs.
... Show MoreThe Yamama Formation includes important carbonates reservoir that belongs to the Lower Cretaceous sequence in Southern Iraq. This study covers two oil fields (Sindbad and Siba) that are distributed Southeastern Basrah Governorate, South of Iraq. Yamama reservoir units were determined based on the study of cores, well logs, and petrographic examination of thin sections that required a detailed integration of geological data and petrophysical properties. These parameters were integrated in order to divide the Yamama Formation into six reservoir units (YA0, YA1, YA2, YB1, YB2 and YC), located between five cap rock units. The best facies association and petrophysical properties were found in the shoal environment, wh
... Show MoreThe current study focuses on utilizing artificial intelligence (AI) techniques to identify the optimal locations of production wells and types for achieving the production company’s primary objective, which is to increase oil production from the Sa’di carbonate reservoir of the Halfaya oil field in southeast Iraq, with the determination of the optimal scenario of various designs for production wells, which include vertical, horizontal, multi-horizontal, and fishbone lateral wells, for all reservoir production layers. Artificial neural network tool was used to identify the optimal locations for obtaining the highest production from the reservoir layers and the optimal well type. Fo
The reservoir units of Mishrif Formation in Majnoon oil field were studied by using available wireline logs (gamma ray, porosity and resistivity) and facies that derived from core and cutting samples for three wells including Mj-1, Mj-15, and Mj-20. The reservoir properties were determined and interpreted by using IP software. The results showed that unit D have the best reservoir properties due to high effective porosity, low water saturation and very low volume of shale. Furthermore, a large part of this unit was deposited in shoal environment. The other reservoir units are then graded in reservoir properties including units B, A, F & E respectively, except unit C, which is considered as a cap unit, because it consists of rest
... Show MoreThis study is achieved in the local area of the Eridu oil field, where the Mishrif Formation is considered the main productive reservoir. The Mishrif Formation was deposited during the Cretaceous period in the secondary sedimentary cycle (Cenomanian-Early Turonian as a part of the Wasia Group, a carbonate succession widespread throughout the Arabian Plate.
The Mishrif Formation already have been evaluated in terms of depositional environments and their diagenetic processes. Here, it will test the previous conclusions with petrophysical properties delineated by using well logging. The results show there is a fully matching with two reservoir units (MA and MB). Dissolution and primary porosity are responsible for f
... Show MoreThe current study summarized the construction of a three-dimensional geological model of the Aquitanian sediments age, which represented by the Euphrates and Serikagni formation in Ajeel Oil Field, where Ajeel Oil Field has structural closure towards northwest - southeast. Sedimentary of the current study consist of limestone, dolomitic limestone, dolomite (compose of skeletal grains, non-skeletal grains and cement) and the appearance of some anhydrite rocks.
The petrographic study of the Euphrates Formation were prepared using a thin section of wells (Aj-1, Aj-4, Aj-5, Aj-6 and Aj-7), Previous studies and geological reports, as well as use well logs data in the statistical analysis by Petrel softwa
... Show MoreMishrif Formation is the main reservoir in Amara Oil Field. It is divided into three units (MA, TZ1, and MB12). Geological model is important to build reservoir model that was built by Petrel -2009. FZI method was used to determine relationship between porosity and permeability for core data and permeability values for the uncored interval for Mishrif formation. A reservoir simulation model was adopted in this study using Eclipse 100. In this model, production history matching executed by production data for (AM1, AM4) wells since 2001 to 2015. Four different prediction cases have been suggested in the future performance of Mishrif reservoir for ten years extending from June 2015 to June 2025. The comparison has been mad
... Show More