In this paper, we introduce the concept of a quasi-radical semi prime submodule. Throughout this work, we assume that is a commutative ring with identity and is a left unitary R- module. A proper submodule of is called a quasi-radical semi prime submodule (for short Q-rad-semiprime), if for , ,and then . Where is the intersection of all prime submodules of .
This paper describes a number of new interleaving strategies based on the golden section. The new interleavers are called golden relative prime interleavers, golden interleavers, and dithered golden interleavers. The latter two approaches involve sorting a real-valued vector derived from the golden section. Random and so-called “spread” interleavers are also considered. Turbo-code performance results are presented and compared for the various interleaving strategies. Of the interleavers considered, the dithered golden interleaver typically provides the best performance, especially for low code rates and large block sizes. The golden relative prime interleaver is shown to work surprisingly well for high puncture rates. These interleav
... Show MoreThis work generalizes Park and Jung's results by introducing the concept of generalized permuting 3-derivation on Lie ideal.
Let R be a prime ring and δ a right (σ,τ)-derivation on R. In the present paper we will prove the following results:
First, suppose that R is a prime ring and I a non-zero ideal of R if δ acts as a homomorphism on I then δ=0 on R, and if δ acts an anti- homomorphism on I then either δ=0 on R or R is commutative.
Second, suppose that R is 2-torsion-free prime ring and J a non-zero Jordan ideal and a subring of R, if δ acts as a homomorphism on J then δ=0 on J, and if δ acts an anti- homomorphism on J then either δ=0 on J or J
Z(R).
The objective of this study was to investigate the drought stress and plant density possibility on water productivity and grain yield of maize (Zea mays L.) (Planting Baghdad 3 synthetic varieties), Field experiment was conducted at Abu Ghraib Research Station (Baghdad) during spring and Autumn seasons of 2016 using a randomized complete block design arranged in split plot with three replications. Three irrigation treatment included: irrigation after depletion 50% of available water (T1), irrigation after depletion 75% of available water (T2) and irrigation after depletion 90% of available water (T3) in the main plots and three plant density which were: 1 seeds hill-1 (D1) giving a uniform plant density of 66666 plants ha-1 , 2 seeds hill1
... Show MoreThe aim of this book is to present a method for solving high order ordinary differential equations with two point boundary condition of the different kind, we propose semi-analytic technique using two-point osculatory interpolation to construct polynomial solution. The original problem is concerned using two-points osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, we discussion the existence and uniqueness of solutions and many examples are presented to demonstrate the applicability, accuracy and efficiency of the methods by compared with conventional method .i.e. VIDM , Septic B-Spline , , NIM , HPM, Haar wavelets on one hand and to confirm the order convergence on the other
... Show MoreEight electronic properties; HUMO, LUMO, HOMO-LUMO energy gap, dipole moment point-charge, dipole moment hybrid, molecular weight, heat of formation and zero-point energy of 60 normal and branched alkanes were examined using topology molecular indices. All the electronic properties were calculated using semi-empirical self-consistent molecular orbital theory. The relationship of electronic calculation properties with seven models of topology indices based on degree and/or distance were obtained in terms of their correlation, regression and principal component analysis. Most of the properties were well-modelled (r2 > 0.82) by topology molecular indices except the dipole moment point-charge and hybrid. The PCA resulted
... Show MoreIn this work, the fusion cross section , fusion barrier distribution and the probability of fusion have been investigated by coupled channel method for the systems 46Ti+64Ni, 40Ca+194Pt and 40Ar+148Sm with semi-classical and quantum mechanical approach using SCF and CCFULL Fortran codes respectively. The results for these calculations are compared with available experimental data. The results show that the quantum calculations agree better with experimental data, especially bellow the Coulomb barrier, for the studied systems while above this barrier, the two codes reproduce the data.
We extended the characterization of strict local minimizers of order two in ward,s
theorem for nonlinear problem to a certain class of nonsmooth semi-infinite problems with inequality constraints in the nonparametric constraint case.
The goal of the research is to introduce new types of maps called semi totally Bc-continuous map and totally Bc-continuous map furthermore, study its properties. Additionally, we study the relationship of these functions and other known mappings are discussed.
The following question was raised by L.Fuchs: "what are the subgroups of an abelian group G that can be represented as intersections of pure subgroups of G ? . Fuchs also added that “One of my main aims is to give the answers to the above question". In this paper, we shall define new subgroups which are a family of the pure subgroups. Then we shall answer problem 2 of L.Fuchs by these semi-pure subgroups which can be represented as the intersections of pure subgroups.