In this paper, we introduce the concept of a quasi-radical semi prime submodule. Throughout this work, we assume that is a commutative ring with identity and is a left unitary R- module. A proper submodule of is called a quasi-radical semi prime submodule (for short Q-rad-semiprime), if for , ,and then . Where is the intersection of all prime submodules of .
The purpose of this paper is to prove the following result : Let R be a 2-torsion free prime *-ring , U a square closed *-Lie ideal, and let T: RR be an additive mapping. Suppose that 3T(xyx) = T(x) y*x* + x*T(y)x* + x*y*T(x) and x*T(xy+yx)x* = x*T(y)x*2 + x*2T(y)x* holds for all pairs x, y U , and T(u) U, for all uU, then T is a reverse *-centralizer.
In the current paper, we study the structure of Jordan ideals of a 3-prime near-ring which satisfies some algebraic identities involving left generalized derivations and right centralizers. The limitations imposed in the hypothesis were justified by examples.
R. Vasuki [1] proved fixed point theorems for expansive mappings in Menger spaces. R. Gujetiya and et al [2] presented an extension of the main result of Vasuki, for four expansive mappings in Menger space. In this article, an important lemma is given to prove that the iteration sequence is Cauchy under suitable condition in Menger probabilistic G-metric space (shortly, MPGM-space). And then, used to obtain three common fixed point theorems for expansive type mappings.
In this research, the eccentricity will be calculated as well as the best height of satellite orbit that can used to transfer from that orbit around the Earth to construct an interplanetary trajectory, for example Mars, when the transfer can be accomplished by a simple impulse, that means the transfer consists of an elliptical orbit from the inner orbit (at a perigee point) to the outer orbit (at apogee point). We will determine Keplerian equation to find the value of a mean anomaly(M) by Rung-Cutta method.
There are several types of satellites orbits around the Earth, but by this study, we find that the best stable orbit to the satellite that is used to inter its orbit around Mars is the Medium Earth Orbit (MEO) at a hei
... Show MoreIn this paper, thermal properties were performed by using semi-empirical theoretical calculations to study the molecular structure of a nonlinear molecular system, the (S2F2) molecule in the infrared region, by using semi-empirical quantum programs in the (MNDO / PM3) method. This study is under the condition of obtaining the stable structure of the molecule in which the molecule obtains the minimum value of the total energy. The thermodynamic properties were also calculated, including the heat of formation, whose value was (-61.002kcal / mol), the entropy and its value (78.2916 cal / mol.k), as well as the heat capacity (15.9454 cal / mol.k) and the enthalpy (3763.434 cal /mol), Gibbs F
... Show MoreThe current paper focuses on the studying the forms of (even-even) nuclei for the heavy elements with mass numbers in the range from (A=226 - 252) for isotopes. This work will consist of studying deformation parameters which is deduced from the "Reduced Electric Transition Probability" which is in its turn dependent on the first Excited State . The "Intrinsic Electric Quadrupole Moments" (non-spherical charge distribution) were also calculated. In addition to that the Roots Mean Square Radii (Isotope Shift) are accounted for in order to compare them with the theoretical results.
The difference and variation in shapes of nuclei for the selected isotopes were detected using &
... Show MoreIn this paper, some relations between the flows and the Enveloping Semi-group were studied. It allows to associate some properties on the topological compactification to any pointed flows. These relations enable us to study a number of the properties of the principles of flows corresponding with using algebric properties. Also in this paper proofs to some theorems of these relations are given.
In this paper, we introduce and study the notions of fuzzy quotient module, fuzzy (simple, semisimple) module and fuzzy maximal submodule. Also, we give many basic properties about these notions.
In a previous work, Ali and Ghawi studied closed Rickart modules. The main purpose of this paper is to define and study the properties of y-closed Rickart modules .We prove that, Let and be two -modules such that is singular. Then is -y-closed Rickart module if and only if Also, we study the direct sum of y-closed Rickart modules.
An R-module M is called a 2-regular module if every submodule N of M is 2-pure submodule, where a submodule N of M is 2-pure in M if for every ideal I of R, I2MN = I2N, [1]. This paper is a continuation of [1]. We give some conditions to characterize this class of modules, also many relationships with other related concepts are introduced.